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Abstract: Rough set theory is a mathematical approach that deals with the problems of uncertainty
and ambiguity in knowledge. Neighborhood systems are the most effective instruments for research-
ing rough set theory in general. Investigations on boundary regions and accuracy measures primarily
rely on two approximations, namely lower and upper approximations, by using these systems. The
concept of the ideal, which is one of the most successful and effective mathematical tools, is used to
obtain a better accuracy measure and to decrease the boundary region. Recently, a generalization
of Pawlak’s rough set concept has been represented by neighborhood systems of graphs based on
rough sets. In this research article, we propose a new method by using the concepts of the ideal and
different neighborhoods from graph vertices. We examine important aspects of these techniques and
produce accuracy measures that exceed those previously = reported in the literature. Finally, we
show that our method yields better results than previous techniques utilized in chemistry.
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1. Introduction

Mathematicians come up with brand new hypotheses on a daily basis because of
the significance of mathematically expressing ambiguous ideas that cannot be defined
by traditional reasoning. Probability and statistics are the subjects of some of the most
influential and well-known theories.

Economics, healthcare, engineering, business and other research fields face the same
challenge: how to model uncertainty in scientific data. The uncertainties that appear in
these fields can take a wide variety of shapes, making it difficult for traditional approaches
to yield positive results. It is commonly known that rough set theory provides ways that
can be helpful in identifying sources of uncertainty. Pawlak [1,2] presented uncertainty
as a mathematical perspective that is concerned with the vagueness and fuzziness of
approximate information. The theory’s basic concept is approximation operators, which
are named in terms of equivalence classes. However, there are modern-day uses where
such an equivalence relation falls short. As a result, various generalizations of equivalence
relations have been proposed [3–5], including tolerance relations, preorder relations and
arbitrary binary relations. Data analysis in biology, chemistry and engineering, etc. are
only a few of the many domains that can benefit from it [6–9].

Lin and Yao [10,11] used neighborhood methods to evaluate granules as they studied
rough sets. Allam et al. and Abd El-Monsef et al. [12,13] introduced the j-neighborhood
space, which represents a generalized type of neighborhood spaces, and proposed mixed
neighborhood systems to approximate rough sets. Amer et al. [7] modified and generalized
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the j-approximations in the j-neighborhood space to produce new j-nearly approximations
as mathematical tools. Several rough set models based on the j-neighborhood space and
other rough set models based on the j-adhesion neighborhood space were generalized by
Atef et al. [14]. Cj-neighborhoods, which are dependent on the inclusion relations between
j-neighborhoods, were defined and studied by Al-Shami [6]. Using the j-neighborhoods, Al-
Shami and Ciucci [15] investigated the ideas of Sj-neighborhoods and their characteristics,
where j ∈ {r, l, 〈r〉, 〈l〉, u, i, 〈u〉, 〈i〉}.

One of the key research topics in the subject of mathematics is the ideal, which
Kuratowski [16] initially defined. An ideal is a non-empty collection of sets that is closed
by the finite additivity and the hereditary condition. Recently, there has been a sharp
increase in interest in various idealized versions of rough sets models. The advantage of
including the concept of the ideal in this theory is that it increases lower approximations
and decreases upper approximations, which reduces the vagueness (uncertainty) of a
notion to uncertainty areas at their borders. As a result, the boundary region is reduced,
and the accuracy measure is enhanced. Additionally, the ideal can be considered as a class
of objects in the information system that has certain conditions and can be studied to arrive
at new granulations on data collected from real-life problems.

Authors have also produced non-granular rough approximations over general approx-
imations by using ideals. These relations based on rough sets aim to yield fine properties
analogous to those of classical rough approximations. Firstly, the concept of ideals with
right neighborhoods was used by Kandil et al. [17] to expand Pawlak’s approximations.
Mathematicians demonstrated that, in comparison with Pawlak’s approach [2] and Yao’s
method [11], their results minimize the boundary region. Then, Hosny [18] generated differ-
ent topologies using the concept of the ideal. The author constructed new j-approximations
using these topologies and demonstrated that the nomenclature of j-approximations ex-
tends to the approximations where j ∈ {r, l, 〈r〉, 〈l〉, u, i, 〈u〉, 〈i〉}. Then, based on the
concept of the ideal and different neighborhoods, Hosny et al. [19] investigated a type of
approximation and compared it with previous ones.

Graph theory [20,21] is an extremely well-known area that has many applications
in various fields, including, but not limited to, advertising, management, commerce, in-
formation transfer, biology and physics. The theory makes it possible to break down the
problem into manageable pieces and tackle them in a methodical, orderly fashion. A graph
is a collection of points called vertices and connections called edges that link the points or
merely the vertices. A graph is simple if it has no loop (i.e., a loop is an edge that connects
a vertex to itself) and no pair of its links joins the same pair of vertices. Graphs can be
defined mathematically as a tuple G = (V, E), where V and E are sets of vertices and edges,
respectively. Mathematicians have carried out extensive work studying graph theory and
its many applications. Two studies that use graph theory to depict binary relations are
those by Jarvinen [22] and Chen and Li [23]. In both cases, the mathematicians used a
directed, basic graph to represent relationships. Starting from their studies, inquiries into
the connections between several crude set theoretic notions and those of graph theory
have emerged.

In 2018, Nada et al. [24] began studying the neighborhood system on rough sets, which
led them to focus on the topological structure of graphs that correctly describe neighbor-
hoods. Structures such as the human heart and self-similar fractals were then represented
using the rough sets on graphs and the neighborhood systems on distinct fields, both of
which are employed in medicine and physics. El-Atik et al. [25–27] defined the neighbor-
hood system including a vertex of a graph and investigated its properties. Finally, utilizing
the ideal and the j-neighborhoods for any subgraph of a given graph, Güler [28] constructed
and explored a novel class of approximations, where j ∈ {r, l, 〈r〉, 〈l〉, u, i, 〈u〉, 〈i〉}.

The main motivation of our study is to investigate the relations between rough sets
and graphs. In addition, we aim to obtain a better accuracy measure based on the concept of
the ideal by using new lower and upper approximations on graphs. Hence, we minimized
the boundary region by decreasing the upper approximations and increasing the lower
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approximations. Moreover, we examined a real-life problem to show that our approach
yielded a better accuracy measure than the measures previously reported in the literature.

The present study is grounded in the concepts of rough sets, ideals and neighborhood
systems. This study consists of four sections. Section 1 comprises the introduction. In
Section 2, we present the definitions and theorems that are used throughout the article.
In Section 3, we define a new class of approximations called I-S-j-approximations, where
j ∈ {r, l, 〈r〉, 〈l〉, u, i, 〈u〉, 〈i〉}, by using the concept of the ideal and the j-neighborhoods
for any subgraph of a given graph. Then, we study the relationships between them. In
addition, we formulate the concepts of the I-S-j-boundary region and the I-S-j-accuracy
of approximations of a subgraph. In Section 4, we define the I-C-j-lower and upper
approximations, the I-C-j-boundary region and the I-C-j-accuracy measure of a subgraph
H of G by using ideals and Cj-neighborhoods. Moreover, we tackle the relationship between
these notions through examples and a taxonomy of their properties, and we also compare
approximations. In the end, we summarize all comparisons and present examples to
support our approach.

2. Preliminaries

In this section, we present the concepts of rough sets, graph theory and neighborhood.

Definition 1. Let X be a non-empty set. Then, a family of sets I ⊆ P(X) is said to be an ideal in X
if [16]:

(a) A, B ∈ I imply A ∪ B ∈ I,
(b) A ∈ I and B ⊂ A imply B ∈ I.

Definition 2. A relation R from a set U to itself is a subset of U ×U and is a binary operation
on U. In this context, (x, y) ∈ R is written as xRy to express that x is R-related on y. Moreover,
an after set (resp. fore set) of an element x ∈ U is the class xR = {y ∈ U : xRy}. (resp.
Rx = {y ∈ U : yRx}). xR (resp. Rx) can also be interpreted as the right neighborhood (resp. right
neighborhood) of x [29].

Definition 3. The binary relation R on a set U is called [29]:

(a) Serial, if for every x ∈ U, ∃y ∈ U such that xRy, i.e., xR 6= ∅;
(b) Inverse serial, if for every x ∈ U, ∃y ∈ U such that yRx, i.e., x ∈ yR;
(c) Reflexive, if for every x ∈ U, xRx;
(d) Symmetric, if for every x, y ∈ U and xRy, then yRx;
(e) Transitive, if for every x, y, z ∈ U, xRy and yRz, then xRz;
(f) Pre-order, if it is a reflexive and transitive relation;
(g) Equivalence, if it is a reflexive, symmetric and transitive relation.

Definition 4. Let U be a finite non-empty set, consider R to be an equivalence relation on U and
let U/R be the family of all equivalence classes of R such that [x]R denotes an equivalence class in
R that contains an element x ∈ U. The pair P = (U, R) is called the Pawlak approximation space.
Moreover, for any X ⊆ U, the Pawlak-lower approximations and Pawlak-upper approximations of
X are defined by [1]:

(a) Apr(X) = {x ∈ U : [x]R ⊆ X};
(b) Apr(X) = {x ∈ U : [x]R ∩ X 6= ∅}.

Later, Yao [11] generalized lower and upper approximations using binary relations
with after sets, as showed in the following definitions:

Definition 5. Let R be a binary relation on a finite non-empty set U and X ⊆ U. The lower
approximations and upper approximations of X are defined by [11]:

(a) R(X) = {x ∈ U : xR ⊆ X};
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(b) R(X) = {x ∈ U : xR ∩ X 6= ∅}.

Definition 6. Consider that R represents any binary relation on a finite non-empty set U and
X ⊆ U. The boundary region and accuracy of approximation of X are defined by [11]:

(a) BDNR(X) = R(X)− R(X);

(b) σR = |R(X)|
|R(X)| . where R(X) 6= ∅.

Proposition 1. Let R be an equivalence relation on a non-empty set U and X, Y ⊆ U. Then, the
following properties apply [1,2]:

(L1) R(X) =
(

R(Xc)
)c;

(L2) R(U) = U;
(L3) R(X) ∪ R(Y) ⊆ R(X ∪Y);
(L4) R(X ∩Y) = R(X) ∩ R(Y);
(L5) If X ⊆ Y, then R(X) ⊆ R(Y);
(L6) R(∅) = ∅;
(L7) R(X) ⊆ X;
(L8) R(R(X)) = R(X);
(L9) R(R(X)) = R(X);
(U1) R(X) = (R(Xc))c;
(U2)R(∅) = ∅;
(U3) R(X) ∪ R(Y) = R(X ∪Y);
(U4) R(X ∩Y) ⊆ R(X) ∩ R(Y);
(U5) If X ⊆ Y, then R(X) ⊆ R(Y);
(U6) R(U) = U;
(U7) X ⊆ R(X);
(U8) R

(
R(X)

)
= R(X);

(U9) R
(

R(X)
)
= R(X).

If R is a binary relation according to Proposition 1, only the properties L1–5 and U1–5
are satisfied.

Definition 7. Let G = (V, E) be a graph. The Nj-neighborhood of v ∈ V (briefly Nj(v)) is defined
under the binary relation R on V, where j ∈ J = {r, l, 〈r〉, 〈l〉, u, i, 〈u〉, 〈i〉}, as follows [12,13]:

(a) Nr(v) = {w ∈ V : vRw};
(b) Nl(v) = {w ∈ V : wRv};

(c) N<r>(v) =
{
∩v∈Nr(w)Nr(w) ∃Nr(w) containing v

∅ otherwise
;

(d) N<l>(v) =
{
∩v∈Nl(w)Nl(w) ∃Nl(w) containing v

∅ otherwise
;

(e) Nu(v) = Nr(v) ∪ Nl(v);
(f) Ni(v) = Nr(v) ∩ Nl(v);
(g) N<u>(v) = N<r>(v) ∪ N<l>(v);
(h) N<i>(v) = N<r>(v) ∩ N<l>(v).

In the following definition, the Nj-neighborhood for j ∈ J and the ideal are used to
define the concept of INj -lower approximations and INj -upper approximations.

Definition 8. Let G = (V, E) be a graph and H = (V(H), E(H)) be a subgraph of G and I be
an ideal on G. For j ∈ J, the INj -lower approximations and INj -upper approximations are defined
as [28]:

(a) N I
j (V(H)) =

{
v ∈ V : Nj(v) ∩V(H)ı ∈ I

}
;

(b) N I
j (V(H)) = V(H) ∪

{
v ∈ V : Nj(v) ∩V(H) /∈ I

}
.
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Definition 9. Let G = (V, E) be a graph and H = (V(H), E(H)) be a subgraph of G and I be an
ideal on G. Then for j ∈ J, the IN∗j

-lower approximations and IN∗j
-upper approximations are defined

respectively by [28]:

(a) N∗I
j (V(H)) = V(H) ∩ N I

j (V(H));

(b) N∗I
j (V(H)) = V(H) ∪ N I

j (V(H)).

In the following definition, the concept of the ideal and Definition 9 are used to present
the concept of IN∗j

-boundary regions and IN∗j
-accuracy measures.

Definition 10. Let G = (V, E) be a graph and H = (V(H), E(H)) be a subgraph of G and I be
an ideal on G. Then for j ∈ J, the INj

∗ -boundary regions and INj
∗ -accuracy of approximations of

V(H) are defined by [28]:

(a) BI
N∗j

(V(H)) = N∗I
j (V(H))− N∗I

j (V(H));

(b) σI
N∗j

(V(H)) =

∣∣∣N∗I
j (V(H))

∣∣∣∣∣∣N∗I
j (V(H))

∣∣∣where
∣∣∣N∗I

j (V(H))
∣∣∣ 6= ∅.

Definition 11. Let G = (V, E) be a graph. Then, for each v ∈ V, the subset neighborhoods of
v ∈ V (described by Sj(v)), j ∈ J are defined as [15]:

(a) Sr(v) = {w ∈ V : Nr(v) ⊆ Nr(w)};
(b) Sl(v) = {w ∈ V : Nl(v) ⊆ Nl(w)};
(c) Su(v) = Sr(v) ∪ Sl(v);
(d) Si(v) = Sr(v) ∩ Sl(v);
(e) S<r>(v) = {w ∈ V : N<r>(v) ⊆ N<r>(w)};
(f) S<l>(v) = {w ∈ V : N<l>(v) ⊆ N<l>(w)};
(g) S<u>(v) = S<r>(v) ∪ S<l>(v);
(h) S<i>(v) = S<r>(v) ∩ S<l>(v).

3. Brief Account of the I-S-j Approximations

In this section we generalize Definition 3.1 from [15] in terms of the subset neighbor-
hoods that are introduced in Definition 11. We give an example to show Sj-neighborhood
systems, which are obtained as a simple graph.

Example 1. Let G be a graph as shown in Figure 1, the Sj-neighborhoods of v, j ∈ J are obtained
as follows:
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ideal on 𝐺. Then for every 𝑗 ∈ 𝐽, the following relationships hold: 
(a) 𝑉(𝑀) ⊆ 𝑆௝ூ(𝑉(𝑀)); 
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(f) If 𝑉(𝑀)ప ∈ 𝐼 then 𝑆௝ூ(𝑉(𝑀)) = 𝑉; 

If 𝑉(𝑀) ∈ 𝐼 then 𝑆௝ூ(𝑉(𝑀)) = 𝑉(𝑀). 

Proof. It is adequate to prove (a) and (e). The other details are obvious from Definition 12 
and the definition of an ideal. 

(a) Let v ∈ 𝑆௝ூ(V(M)). Then 𝑆௝(𝑣) ∩ 𝑉(𝑀)ప ∈ 𝐼. Since 𝑉(𝑀) ⊆ 𝑉(𝑁), following the con-
cept of the ideal, 𝑆௝(𝑣) ∩ V(N)ప ∈ 𝐼. Hence 𝑆௝ூ൫V(M)൯ ⊆ 𝑆௝ூ(V(N)). 
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In general, the equations in Proposition 2 (d) and Proposition 2 (e) may not always 
be true as shown in the following example. Additionally, we show that the converse im-
plications of Proposition 2 (b) and (f) may not hold. 

Example 2. Let 𝐺 be a graph as shown in Figure 1 and 𝐼 = ൛∅, {𝑣ଷ}ൟ. 
(a) Let 𝑉(𝐻) = {𝑣ଵ, 𝑣ସ}  and 𝑉(𝑀) = {𝑣ଶ, 𝑣ହ} , 𝑆௥ூ൫𝑉(𝐻) ∪ 𝑉(𝑀)൯ = 𝑉(𝐺).  𝑆௥ூ൫𝑉(𝐻)൯ ={𝑣ଵ, 𝑣ଷ} and 𝑆௥ூ(𝑉(𝑀)) = {𝑣ଶ}. So 𝑆௥ூ൫𝑉(𝐻) ∪ 𝑉(𝑀)൯ ≠ 𝑆௥ூ൫𝑉(𝐻)൯ ∪ 𝑆௥ூ(𝑉(𝑀)). 
(b) Let 𝑉(𝐻) = {𝑣ଵ, 𝑣ସ} and 𝑉(𝑀) = {𝑣ଵ, 𝑣ହ}. 𝑆௥ூ(𝑉(𝑀)) = {𝑣ଵ, 𝑣ଷ, 𝑣ହ}. We obtain 𝑆௥ூ൫𝑉(𝐻)൯ ⊆𝑆௥ூ(𝑉(𝑀)), but it is not 𝑉(𝐻) ⊈ 𝑉(𝑀).  

Figure 1. A simple graph G.

For j ∈ {r, l, u, i}; Sj(v1) = Sj(v3) = {v1, v3}, Sj(v2) = {v2}, Sj(v4) = {v2, v4},
Sj(v5) = {v1, v3, v5}. For j ∈ {〈r〉, 〈l〉, 〈u〉, 〈i〉}, Sj(v1) = Sj(v3) = {v1, v3, v5},
Sj(v2) = {v2, v4}, Sj(v4) = {v4}, Sj(v5) = {v5}.
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Definition 12. Let G = (V, E) be a graph and H = (V(H), E(H)) be a subgraph of G and I be an
ideal on G. For j ∈ J, then ISj -lower approximations and ISj -upper approximations are defined by:

(a) SI
j (V(H)) =

{
v ∈ V : Sj(v) ∩V(H)ı ∈ I

}
;

(b) SI
j (V(H)) = V(H) ∪

{
v ∈ V : Sj(v) ∩V(H) /∈ I

}
.

Proposition 2. Let G = (V, E) be a graph and H = (V(H), E(H)) be a subgraph of G and I be
an ideal on G. Then for every j ∈ J, the following relationships hold:

(a) V(M) ⊆ SI
j (V(M));

(b) V(M) ⊆ V(N) implies SI
j (V(M)) ⊆ SI

j (V(N));

V(M) ⊆ V(N) implies SI
j (V(M)) ⊆ SI

j (V(N));

(c) SI
j (V) = SI

j (V) = V; SI
j (∅) = ∅;

(d) SI
j (V(M) ∪V(N)) ⊇ SI

j (V(M)) ∪ SI
j (V(N));

SI
j (V(M) ∪V(N)) = SI

j (V(M)) ∪ SI
j (V(N));

(e) SI
j (V(M) ∩V(N)) = SI

j (V(M)) ∩ SI
j (V(N));

SI
j (V(M) ∩V(N)) ⊆ SI

j (V(M)) ∩ SI
j (V(N));

(f) If V(M)ı ∈ I then SI
j (V(M)) = V;

If V(M) ∈ I then SI
j (V(M)) = V(M).

Proof. It is adequate to prove (a) and (e). The other details are obvious from Definition 12
and the definition of an ideal.

(a) Let v ∈ SI
j (V(M)). Then Sj(v) ∩ V(M)ı ∈ I. Since V(M) ⊆ V(N), following the

concept of the ideal, Sj(v) ∩V(N)ı ∈ I. Hence SI
j (V(M)) ⊆ SI

j (V(N)).

(e) We obtain SI
j (V(M) ∩V(N)) ⊆ SI

j (V(M)) ∩ SI
j (V(N)) via (b). Let v ∈ SI

j (V(M)) ∩
SI

j (V(N)). So, v ∈ SI
j (V(M)) and v ∈ SI

j (V(N)). Based on the definition of the ISj -
lower approximations, we find that Sj(v) ∩V(M)ı ∈ I and Sj(v) ∩V(N)ı ∈ I. According
to the concept of the ideal, v ∈ SI

j (V(M) ∩V(N)). Therefore, SI
j (V(M)) ∩ SI

j (V(N)) ⊆
SI

j (V(M) ∩V(N)). �

In general, the equations in Proposition 2 (d) and Proposition 2 (e) may not always
be true as shown in the following example. Additionally, we show that the converse
implications of Proposition 2 (b) and (f) may not hold.

Example 2. Let G be a graph as shown in Figure 1 and I = {∅, {v3}}.
(a) Let V(H) = {v1, v4} and V(M) = {v2, v5}, SI

r(V(H) ∪V(M)) = V(G).
SI

r(V(H)) = {v1, v3} and SI
r(V(M)) = {v2}. So SI

r(V(H) ∪V(M)) 6= SI
r(V(H)) ∪

SI
r(V(M)).

(b) Let V(H) = {v1, v4} and V(M) = {v1, v5}. SI
r(V(M)) = {v1, v3, v5}. We obtain

SI
r(V(H)) ⊆ SI

r(V(M)), but it is not V(H) * V(M).
(c) Let V(H) = {v1, v4} and V(M) = {v2, v5}, SI

r(V(H) ∩V(M)) = ∅.

SI
r(V(H)) = {v1, v3, v4, v5} and SI

r(V(M)) = {v2, v4, v5}. Hence, SI
r(V(H) ∩V(N)) 6=

SI
r(V(H)) ∩ SI

r(V(N)).
(d) Let V(H) = {v1, v2}. Then SI

r(V(H)) = V(G) while V(H) /∈ I.

Remark 1. In Pawlak’s rough set model, the following properties that are given in Proposition 1 do
not always hold:

(a) SI
j (V(M))V(M);

(b) SI
j

(
SI

j (V(M))
)
= SI

j (V(M));
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SI
j

(
SI

j (V(M))
)
= SI

j (V(M));

(c) (SI
j (V(M)))

ı
= SI

j
(
V(M)ı);

(SI
j (V(M)))

ı
= SI

j (V(M)ı).

Example 3.

(a) Let G be a graph as shown in Figure 1 and I = {∅, {v3}}.
i. Let V(M) = {v1, v4}. Then SI

r(V(M)) = {v1, v3}. So SI
r(V(M)) * V(M).

ii. Let V(M) = {v2, v3, v4}. Then SI
r(V(M)) = {v2, v3, v4} and SI

r
(
V(M)ı)) =

{v1, v3, v5}. Hence, (SI
r(V(M)))

ı 6= SI
r(V(M)ı).

(b) Let G be a graph as shown in Figure 2 and I = {∅, {v2}, {v3}, {v2, v3}}. Let V(M) = {v4}.
Then SI

r(V(M)) = {v1, v4, v5} and SI
r

(
SI

r(V(M))
)
= V(G). Hence SI

r

(
SI

r(V(M))
)
6=

SI
r(V(M)).
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The proposition below is the comparison of the given lower approximations.

Proposition 3. The following properties always hold:

(a) SI
u(V(M)) ⊆ SI

r(V(M)) ⊆ SI
i (V(M));

(b) SI
u(V(M)) ⊆ SI

l (V(M)) ⊆ SI
i (V(M));

(c) SI
<u>(V(M)) ⊆ SI

<r>(V(M)) ⊆ SI
<i>(V(M));

(d) SI
<u>(V(M)) ⊆ SI

<l>(V(M)) ⊆ SI
<i>(V(M)).

Proof. The proof of Proposition 3 is straightforward. �

The proposition below is the comparison of the given upper approximations.

Proposition 4. The following properties always hold:

(a) SI
u(V(H)) ⊆ SI

r(V(H)) ⊆ SI
i (V(H));

(b) SI
u(V(H)) ⊆ SI

l (V(H)) ⊆ SI
i (V(H));



Mathematics 2023, 11, 2305 8 of 17

(c) SI
<u>(V(H)) ⊆ SI

<r>(V(H)) ⊆ SI
<i>(V(H));

(d) SI
<u>(V(H)) ⊆ SI

<l>(V(H)) ⊆ SI
<i>(V(H)).

Proof. The proof of Proposition 4 is straightforward. �

Lemma 1. Let G be a graph, H a subgraph of G and I, J two ideals on G. If I ⊆ J , the following
properties hold:

(a) SI
j (V(H)) ⊆ SJj (V(H));

(b) SJj (V(H)) ⊆ SI
j (V(H)).

Proof.

(a) Let v ∈ SI
j (V(H)). Then Sj(v)∩V(H)ı ∈ I. Since I ⊆ J , we have Sj(v)∩V(H)ı ∈ J .

Hence, we obtain ∈ SJ
j (V(H)).

(b) The proof is similar to (a).

�

We formulate new approximations as IS∗j
-lower approximations and IS∗j

-upper approx-
imations by using ideals and the Sj-neighborhood.

Definition 13. Let G be a graph, H a subgraph of G and I an ideal on G. For every j ∈ J, IS∗j
-lower

approximations and IS∗j
-upper approximations are defined by:

(a) S∗I
j (V(H)) = V(H) ∩ SI

j (V(H));

(b) S∗I
j (V(H)) = V(H) ∪ SI

j (V(H)).

In Proposition 5, in addition to the properties mentioned in Proposition 2, the proper-
ties (L6–7) and (U6–7) in Pawlak’s rough set model are also provided by Definition 13.

Proposition 5. Let G be a graph, H a subgraph of G and I an ideal on G. For every j ∈ J, the
following properties apply:

(a) S∗I
j (V(H)) ⊆ V(H) ⊆ S∗I

j (V(H));

(b) S∗I
j (∅) = S∗I

j (∅) = ∅.

Proof. The proof is obvious from Definition 13. �

In the following definition, the concept of the ideal and Definition 13 are used to
introduce the new concepts of IS∗j

-boundary regions and IS∗j
-accuracy measures.

Definition 14. Let G be a graph, H a subgraph of G and I an ideal on G. For every j ∈ J,
ISj
∗ -boundary regions and ISj

∗ -accuarcy of approximations of V(H) are defined by:

(a) BI
S∗j
(V(H)) = S∗I

j (V(H))− S∗I
j (V(H));

(b) σI
N∗j

(V(H)) =

∣∣∣S∗I
j (V(H))

∣∣∣∣∣∣S∗I
j (V(H))

∣∣∣ , where
∣∣∣S∗I

j (V(H))
∣∣∣ 6= ∅.

Corollary 1. The following properties always hold:

(a) BI
Su
(V(M)) ⊆ BI

Sr
(V(M)) ⊆ BI

Si
(V(M));

(b) BI
Su
(V(M)) ⊆ BI

Sr
(V(M)) ⊆ BI

Si
(V(M));

(c) BI
S<u>

(V(M)) ⊆ BI
S<r>

(V(M)) ⊆ BI
S<i>

(V(M));
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(d) BI
S<u>

(V(M)) ⊆ BI
S<l>

(V(M)) ⊆ BI
S<i>

(V(M)).

Proof. The proof is obvious from Definition 14 and Propositions 3 and 4. �

Corollary 2. The following properties always hold:

(a) σI
Su
(V(M)) ≤ σI

Sr
(V(M)) ≤ σI

Si
(V(M));

(b) σI
Su
(V(M)) ≤ σI

Sr
(V(M)) ≤ σI

Si
(V(M));

(c) σI
S<u>

(V(M)) ≤ σI
S<r>

(V(M)) ≤ σI
S<i>

(V(M));
(d) σI

S<u>
(V(M)) ≤ σI

S<l>
(V(M)) ≤ σI

S<i>
(V(M)).

Proof. The proof is obvious from Definition 14 and Propositions 3 and 4. �

Definition 15. For every j ∈ J, a subgraph M is called HSI
j
-definable (HSI

j
-exact) if S∗I

j (V(M)) =

S∗I
j (V(M)). Otherwise, M is called HSI

j
-rough set.

Lemma 2. Let G be a graph, M a subgraph of G and I an ideal on G. For every j ∈ J, M is
HSI

j
-exact if BI

S∗j
(V(M)) = ∅.

Example 4. Let G be a graph as shown in Figure 1 and I = {∅, {v1}, {v3}, {v1, v3}}. Let
V(M) = {v1, v2, v4, v5}. Then, M is HSI

j
-exact.

4. Brief Account of the I-C-j Approximations

In this section we generalize Definition 3.1 from [6] in terms of containment neighbor-
hoods, which are introduced in Definition 16. We report the lower and upper approxima-
tions by using the concepts of containment neighborhoods and the ideal.

Definition 16. Let G = (V, E) be a graph. For each v ∈ V, the Cj-neighborhood of v, j ∈ J is
defined as [6]:

(a) Cr(v) = {w ∈ V : Nr(w) ⊆ Nr(v)};
(b) Cl(v) = {w ∈ V : Nl(w) ⊆ Nl(v)};
(c) Cu(v) = Cr(v) ∪ Cl(v);
(d) Ci(v) = Cr(v) ∩ Cl(v);
(e) C<r>(v) = {w ∈ V : N<r>(w) ⊆ N<r>(v)};
(f) C<l>(v) = {w ∈ V : N<l>(w) ⊆ N<l>(v)};
(g) C<u>(v) = C<r>(v) ∪ C<l>(v);
(h) C<i>(v) = C<r>(v) ∩ C<l>(v).

Definition 17. Let G be a graph, H a subgraph of G and I an ideal on G. For j ∈ J, the ICj -lower
approximations and ICj -upper approximations are defined by the following:

(a) CI
j (V(H)) =

{
v ∈ V : Cj(v) ∩V(H)ı ∈ I

}
;

(b) CI
j (V(H)) = V(H) ∪ {v ∈ V : C(v) ∩V(H) /∈ I}.

Proposition 6. Let G = (V, E) be a graph, M and N be subgraphs of G and I an ideal on G. For
every j ∈ J, the following properties hold:

(a) V(M) ⊆ CI
j (V(M));

(b) V(M) ⊆ V(N) implies CI
j (V(M)) ⊆ CI

j (V(N));

V(M) ⊆ V(N) implies CI
j (V(M)) ⊆ CI

j (V(N));

(c) CI
j (V) = CI

j (V) = V;
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CI
j (∅) = ∅;

(d) CI
j (V(M) ∪V(N)) ⊇ CI

j (V(M)) ∪ CI
j (V(N));

CI
j (V(M) ∪V(N)) = CI

j (V(M)) ∪ CI
j (V(N));

(e) CI
j (V(M) ∩V(N)) = CI

j (V(M)) ∩ CI
j (V(N));

CI
j (V(M) ∩V(N)) ⊆ CI

j (V(M)) ∩ CI
j (V(N));

(f) If V(M)ı ∈ I then CI
j (V(M)) = V;

If V(M) ∈ I then CI
j (V(M)) = V(M).

Proof. The proof for Proposition 6 is similar to the one provided for Proposition 2. �

In general, the equations in Proposition 6 (d) and Proposition 6 (e) may not always
be true as shown in the following example. Additionally, we show that the converse
implications of Proposition 6 (b) and (f) may not hold.

Example 5. Let G be a graph as shown in Figure 1 and I = {∅, {v2}, {v3}, {v2, v3}}.
(a) Let V(H) = {v1, v4} and V(M) = {v2, v5}, and let CI

r(V(H) ∪V(M)) = V.
CI

r(V(H)) = {v2, v4} and CI
r(V(M)) = {v5}. Hence, CI

r(V(H) ∪V(M)) 6= CI
r (V(H))∪

CI
r(V(M)).

(b) Let V(H) = {v2, v5} and V(M) = {v4, v5}. CI
r(V(M)) = {v2, v4, v5}. We obtain

CI
r(V(H)) ⊆ CI

r(V(M)), but it is not V(H) * V(M).
(c) Let V(H) = {v1, v4} and V(M) = {v2, v5}, and let CI

r(V(H) ∩V(M)) = ∅.

CI
r(V(H)) = {v1, v2, v3, v4} and CI

r(V(M)) = {v1, v2, v3, v5}. Hence,
CI

r(V(H) ∩V(M)) 6= CI
r(V(H)) ∩ CI

r(V(M)).
(d) Let V(H) = {v1, v3}. It follows that CI

r(V(H)) = V(H) while V(H) /∈ I.

Remark 2. In Pawlak’s rough set model, the following properties that are given in Proposition 6 do
not always hold:

(a) CI
j (V(M)) ⊆ V(M);

(b) CI
j

(
CI

j (V(M))
)
= CI

j (V(M));

CI
j

(
CI

j (V(M))
)
= CI

j (V(M));

(c) (CI
j (V(M)))

ı
= CI

j
(
V(M)ı).

Example 6. Let G be a graph as shown in Figure 1 and I = {∅, {v2}, {v3}, {v2, v3}}.
(a) Let V(M) = {v1, v4}. Then, CI

r(V(M)) = {v2, v4}. Hence, CI
r(V(M)) * V(M).

(b) Let V(M) = {v2, v5}. Then CI
r(V(M)) = {v1, v2, v3, v5} and CI

j

(
CI

j (V(M))
)

= V.

Hence, CI
j

(
CI

j (V(M))
)
6= CI

j (V(M)).

(c) Let V(M) = {v1, v4}. Then, CI
r(V(M)) = {v2, v4} and CI

j
(
V(M)ı) = {v2, v3, v5}.

Hence, (CI
j (V(M)))

ı 6= CI
j (V(M)ı).

The proposition below is the comparison of the given upper approximations.

Proposition 7. The following properties always hold:

(a) CI
u(V(M)) ⊆ CI

r(V(M)) ⊆ CI
i (V(M));

(b) CI
u(V(M)) ⊆ CI

l (V(M)) ⊆ CI
i (V(M));

(c) CI
<u>(V(M)) ⊆ CI

<r>(V(M)) ⊆ CI
<i>(V(M));

(d) CI
<u>(V(M)) ⊆ CI

<l>(V(M)) ⊆ CI
<i>(V(M)).
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Proof. The proof of Proposition 7 is straightforward. �

The proposition below is the comparison of the given upper approximations.

Proposition 8. The following properties always hold:

(a) CI
u(V(M)) ⊆ CI

r(V(M)) ⊆ CI
i (V(M));

(b) CI
u(V(M)) ⊆ CI

l (V(M)) ⊆ CI
i (V(M));

(c) CI
<u>(V(M)) ⊆ CI

<r>(V(M)) ⊆ CI
<i>(V(M));

(d) CI
<u>(V(M)) ⊆ CI

<l>(V(M)) ⊆ CI
<i>(V(M)).

Proof. The proof of Proposition 8 is straightforward. �

Lemma 3. Let G be a graph, M a subgraph of G and I,J ideals on G. If I ⊆ J , the following
properties hold:

(a) CI
j (V(M)) ⊆ CJj (V(M));

(b) CJj (V(M)) ⊆ CI
j (V(M)).

Proof. The proof for Lemma 3 is similar to the one provided for Lemma 1. �

We formulate new approximations as IC∗j
-lower approximations and IC∗j

-upper ap-
proximations by using ideals and Cj-neighborhood.

Definition 18. Let G be a graph, H a subgraph of G and I an ideal on G. In this context, for every
j ∈ J, IC∗j

-lower approximations and IC∗j
-upper approximations are defined by the following:

(a) C∗I
j (V(H)) = V(H) ∩ CI

j (V(H));

(b) C∗I
j (V(H)) = V(H) ∪ CI

j (V(H)).

In Proposition 9, in addition to the properties from Proposition 6, the properties (L6–7),
(U6–7) in Pawlak’s rough set model are also provided through Definition 18.

Proposition 9. Let G be a graph, H a subgraph of G and I an ideal on G. Hence, for every j ∈ J,
the following properties apply:

(a) C∗I
j (V(H)) ⊆ V(H) ⊆ C∗I

j (V(H));

(b) C∗I
j (∅) = C∗I

j (∅) = ∅.

In the following definition, the information from Definition 18 is used to introduce the
new concepts of IC∗j

-boundary regions and IC∗j
-accuracy measures.

Definition 19. Let G be a graph, H be a subgraph of G and I an ideal on G. Then, for every j ∈ J,
ICj
∗ -boundary regions and ICj

∗ -accuarcy of approximations of V(H) are defined as follows:

(a) BI
C∗j
(V(H)) = C∗I

j (V(H))− C∗I
j (V(H));

(b) σI
C∗j
(V(H)) =

∣∣∣C∗I
j (V(H))

∣∣∣∣∣∣C∗I
j (V(H))

∣∣∣ where
∣∣∣C∗I

j (V(H))
∣∣∣ 6= ∅.

Definition 20. For every j ∈ J, the subgraph H is called HCI
j
-definable (HCI

j
-exact) if

C∗I
j (V(M)) = C∗I

j (V(M)). Otherwise, H is called HCI
j
-rough set.
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Lemma 4. Let G be a graph, M be a subgraph of G and I an ideal on G. In this case, for every
j ∈ J, M is HCI

j
-exact iff BI

C∗j
(V(M)) = ∅.

Example 7. Let G be a graph as shown in Figure 2 and I = {∅, {v2}, {v5}, {v2, v5}}. Let
V(M) = {v1, v2, v4, v5}. Then, M is HCI

j
-exact.

Corollary 3. The following properties always hold:

(a) BI
Cu
(V(M)) ⊆ BI

Cr
(V(M)) ⊆ BI

Ci
(V(M));

(b) BI
Cu
(V(M)) ⊆ BI

Cl
(V(M)) ⊆ BI

Ci
(V(M));

(c) BI
C<u>

(V(M)) ⊆ BI
C<r>

(V(M)) ⊆ BI
C<i>

(V(M));
(d) BI

C<u>
(V(M)) ⊆ BI

C<l>
(V(M)) ⊆ BI

C<i>
(V(M)).

Proof. The proof is obvious from Definition 19 and Propositions 7 and 8. �

Corollary 4. The following properties always hold:

(a) σI
Cu
(V(M)) ≤ σI

Cr
(V(M)) ≤ σI

Ci
(V(M));

(b) σI
Cu
(V(M)) ≤ σI

Cl
(V(M)) ≤ σI

Ci
(V(M));

(c) σI
C<u>

(V(M)) ≤ σI
C<r>

(V(M)) ≤ σI
C<i>

(V(M));
(d) σI

C<u>
(V(M)) ≤ σI

C<l>
(V(M)) ≤ σI

C<i>
(V(M)).

Proof. The proof is obvious from Definition 19 and Propositions 7 and 8. �

Remark 3.

(a) The boundary regions and accuracy measures in Table A1 (see Appendix A) are generated using
our method in accordance with Example 7, which assumes the ideal I = {∅, {v2}, {v3}, {v2, v3}}.
Thus, it was noticed that ISi

∗ -accuracy is more precise than ISj
∗ -accuracy for j = {r, l, u}.

(b) The lower approximations, upper approximations, boundary regions and accuracy measures
in Table A2 (see Appendix A) are determined using the approach from Güler [28] and our
approach based on Example 7, which considers the ideal I = {∅, {v2}, {v3}, {v2, v3}}. As a
result, we report that our methodologies’ accuracy measures differ significantly from those in
the literature.

(c) Using our methods based on Example 5, the lower approximations, upper approximations,
boundary regions and accuracy measures are determined in Table A3 (see Appendix A). As a
result, it can be observed that our methodologies’ accuracy measures are incomparable.

5. Comparative Analysis

This section’s major goal is to provide a straightforward practice example so that one
can contrast our method with Güler’s approach [28]. We use the example from Walczak [30]
applied to the field of chemistry. Let V = {v1, v2, v3, v4, v5} be five amino acids a1 (i.e., PIF),
a2 (i.e., DGR), a3 (i.e., SAC or surface area), a4 (i.e., MR or molecular refractivity) and a5 (i.e.,
VOL or molecular volume).
Example 8. Consider the data in Table 1, which comprises details regarding the five amino acids
mentioned before.

Table 1. Quantitative attributes of the five amino acids.

a1 a2 a3 a4 a5

v1 −0.22 0.29 335 3458 127.5
v2 −0.64 0.76 331.6 3.2430 120.5
v3 0 0 224.9 1.6662 65
v4 0.13 −0.25 337.2 3.856 140.6
v5 1.8 −2.1 322.6 3.3500 131.7
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Hence, there are five relationships described as:
Ri =

{(
vi, vj

)
:
∣∣vi − vj

∣∣ ≤ σm
2 , i, j = 1, . . . , 5, m = 1, . . . , 5

}
, where σm represents the

standard deviations of the quantitative attributes am, m = 1, . . . , 5.
In order to represent the set of all attributes, we display the graph in Figure 3 such that

xR = ∩xRk, k = 1, . . . , 5, which yields the j-neighborhood system for adjacent vertices.

Mathematics 2023, 11, x F� R PEER REVIEW 13 of 16 
 

 

 
Figure 3. A directed graph G. 

Hence, we obtain the following: 𝑁௥(𝑣ଵ) = {𝑣ଵ, 𝑣ସ}, 𝑁௥(𝑣ଶ) = {𝑣ଶ} , 𝑁௥(𝑣ଷ) = {𝑣ଷ} , 𝑁௥(𝑣ସ) = {𝑣ସ} , 𝑁௥(𝑣ହ) = {𝑣ହ} . Then, 𝑆௥(𝑣ଵ) = {𝑣ଵ}, 𝑆௥(𝑣ଶ) = {𝑣ଶ}, 𝑆௥(𝑣ଷ) = {𝑣ଷ}, 𝑆௥(𝑣ସ) = {𝑣ଵ, 𝑣ସ}, 𝑆௥(𝑣ହ) = {𝑣ହ}. 
It is known that an ideal of a directed graph neighborhood is contained in the ideal 

associated with some out-neighborhoods of a vertex in 𝐺. In Figure 3, in the directed graph 
obtained depending on the amino acid distances; it is seen that the only node with a dif-
ferent out-neighborhood from itself is 𝑣ଵ. Hence, by using the ideal 𝐼 = {∅, {𝑣ଵ}}, we obtain 
the details in Table 2 as follows: 

Table 2. Comparison between lower approximations, upper approximations, 𝑗-boundary and 𝑗-ac-
curacy measures for 𝑗 = 𝑙. 

𝑽(𝑯) 
Güler’s Approach Our Approach 𝑵𝒓∗𝑰(𝐕(𝐇)) 𝑵𝒋∗𝑰(𝐕(𝐇)) 𝑩𝒓∗𝑰(𝐕(𝐇)) 𝝈𝑵𝒓∗𝑰 (𝐕(𝐇)) 𝑪𝒓∗𝑰(𝐕(𝐇)) 𝑪𝒓∗𝑰(𝐕(𝐇)) 𝑩𝑪𝒓∗𝑰 (𝐕(𝐇)) 𝝈𝑪𝒓∗𝑰 (𝐕(𝐇)) {𝑣ସ} {𝑣ସ} {𝑣ଵ, 𝑣ସ} {𝑣ଵ} 1/2 {𝑣ସ} {𝑣ସ} ∅ 1 {𝑣ଶ, 𝑣ସ} {𝑣ଶ, 𝑣ସ} {𝑣ଵ, 𝑣ଶ, 𝑣ସ} {𝑣ଵ} 2/3 {𝑣ଶ, 𝑣ସ} {𝑣ଶ, 𝑣ସ} ∅ 1 {𝑣ଵ, 𝑣ଷ, 𝑣ହ} {𝑣ଷ, 𝑣ହ} {𝑣ଵ, 𝑣ଷ, 𝑣ସ} {𝑣ଵ} 2/3 {𝑣ଵ, 𝑣ଷ, 𝑣ହ} {𝑣ଵ, 𝑣ଷ, 𝑣ହ} ∅ 1 

Hence, from this practical example, we concluded that the accuracy measures of our 
approach are considerably higher than those from Güler [28]. Based on our results, we 
believe that the proposed approach is very useful in the context of rough set theory. 

6. Conclusions 
Many studies on graph theory, rough set theory and their applications have been 

conducted by mathematicians. Furthermore, neighborhood systems, which are based on 
graph vertices, have also been tackled in the field of mathematics. The ideal is one of the 
fundamental concepts in mathematics which plays an important role in some research to 
generalize rough set. Ideal theory gives us an advantage in increasing the lower approxi-
mations and decreasing the upper approximations and reduces the vagueness (uncer-
tainty) of a notion to uncertainty areas at their borders. Moreover, ideal theory can also 
help us to make new granulations on data which are collected from real-life problems. 
Consequently, neighborhood systems, ideals and rough sets on graphs are used in numer-
ous research fields such as chemistry, biology and medicine. 

In this study, we generated different approximations of a graph on new types of 
neighborhood systems by using ideals. In this sense, we used a class of approximations 
called 𝐼ௌೕ-approximations (𝐼஼ೕ-approximations), where 𝑗 ∈ 𝐽 by using an ideal. Then, we 
investigated the relationships between them and proposed the concept of the 𝐼ௌೕ-bound-
ary region (𝐼஼ೕ-boundary region) and the 𝐼ௌೕ-accuracy of approximations (𝐼஼ೕ-accuracy of 

Figure 3. A directed graph G.

Hence, we obtain the following:
Nr(v1) = {v1, v4}, Nr(v2) = {v2}, Nr(v3) = {v3}, Nr(v4) = {v4}, Nr(v5) = {v5}.

Then, Sr(v1) = {v1}, Sr(v2) = {v2}, Sr(v3) = {v3}, Sr(v4) = {v1, v4}, Sr(v5) = {v5}.
It is known that an ideal of a directed graph neighborhood is contained in the ideal

associated with some out-neighborhoods of a vertex in G. In Figure 3, in the directed
graph obtained depending on the amino acid distances; it is seen that the only node with a
different out-neighborhood from itself is v1. Hence, by using the ideal I = {∅, {v1 }}, we
obtain the details in Table 2 as follows:

Table 2. Comparison between lower approximations, upper approximations, j-boundary and j-
accuracy measures for j = l.

V(H)

Güler’s Approach Our Approach

N
¯

*I

r
(V(H)) N*I

j (V(H)) B*I
r (V(H)) σ*I

Nr
(V(H)) C

¯
*I

r
(V(H)) C*I

r (V(H)) B*I
Cr
(V(H)) σ*I

Cr
(V(H))

{v4} {v4} {v1, v4} {v1} 1/2 {v4} {v4} ∅ 1

{v2, v4} {v2, v4} {v1, v2, v4} {v1} 2/3 {v2, v4} {v2, v4} ∅ 1

{v1, v3, v5} {v3, v5} {v1, v3, v4} {v1} 2/3 {v1, v3, v5} {v1, v3, v5} ∅ 1

Hence, from this practical example, we concluded that the accuracy measures of our
approach are considerably higher than those from Güler [28]. Based on our results, we
believe that the proposed approach is very useful in the context of rough set theory.

6. Conclusions

Many studies on graph theory, rough set theory and their applications have been
conducted by mathematicians. Furthermore, neighborhood systems, which are based on
graph vertices, have also been tackled in the field of mathematics. The ideal is one of the
fundamental concepts in mathematics which plays an important role in some research to
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generalize rough set. Ideal theory gives us an advantage in increasing the lower approxi-
mations and decreasing the upper approximations and reduces the vagueness (uncertainty)
of a notion to uncertainty areas at their borders. Moreover, ideal theory can also help us to
make new granulations on data which are collected from real-life problems. Consequently,
neighborhood systems, ideals and rough sets on graphs are used in numerous research
fields such as chemistry, biology and medicine.

In this study, we generated different approximations of a graph on new types of
neighborhood systems by using ideals. In this sense, we used a class of approximations
called ISj -approximations (ICj -approximations), where j ∈ J by using an ideal. Then, we
investigated the relationships between them and proposed the concept of the ISj -boundary
region (ICj -boundary region) and the ISj -accuracy of approximations (ICj -accuracy of ap-
proximations) of a subgraph. Additionally, we showed that our methodologies’ accuracy
measures are incomparable.

As we demonstrated in our study, the models presented are successful in reducing the
areas of ambiguity, which aids in the production of a more precise conclusion. Moreover,
we compared our approximations with one reported by the literature [28] and concluded
that our approximations were more accurate.

Finally, starting from Walczak’s proposal for the chemistry field, we reported that our
approach provided better results.

One can study new types of approximations on graph theory to obtain better accuracy
measures by using different methods studied in [31–33]. These new methods can also
be studied by applying them to various real-life problems. Moreover, our methods can
be extended to fuzzy graph theory and hence, one can find a more positive solution to
decision-making problems.
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Appendix A

Table A1. Comparison between the j-boundary and j-accuracy measures by using our approach for
j = {r, l, u, i}.

V(H)
For j = r For j = l For j = u For j = i

BI
S*

r
(V(H)) σI

S*
r
(V(H)) BI

S*
l
(V(H)) σI

S*
l
(V(H)) BI

S*
u
(V(H)) σI

S*
u
(V(H)) BI

S*
i
(V(H)) σI

S*
i
(V(H))

{v1} {v1, v4, v5} 0 {v1, v4, v5} 0 {v1, v4, v5} 0 {v1} 1/2

{v2} ∅ 1 ∅ 1 ∅ 1 ∅ 1

{v3} ∅ 1 ∅ 1 ∅ 1 ∅ 1

{v4} {v1, v4, v5} 0 {v4, v5} 0 {v1, v4, v5} 0 {v4, v5} 0

{v5} {v5} 0 {v4, v5} 0 {v4, v5} 0 {v4, v5} 0

{v1, v2} {v1, v4, v5} 1/4 {v5} 1/3 {v4, v5} 1/2 {v4, v5} 1/2

{v1, v3} {v1, v4, v5} 1/4 {v4, v5} 1/2 {v1, v4, v5} 1/4 {v4, v5} 1/2

{v1, v4} {v1, v4, v5} 0 {v4, v5} 1/3 {v1, v4, v5} 0 {v4, v5} 1/3

{v1, v5} {v1, v2, v4} 1/4 {v4, v5} 1/3 {v1, v2, v4, v5} 0 ∅ 1

{v2, v3} ∅ 1 ∅ 1 ∅ 1 ∅ 1

{v2, v4} {v1, v2, v4, v5} 1/4 {v4, v5} 1/3 {v1, v2, v4, v5} 1/4 {v4, v5} 1/3

{v2, v5} {v5} 1/2 {v4, v5} 1/3 {v4, v5} 1/3 {v5} 1/2

{v3, v4} {v1, v4, v5} 1/4 {v4, v5} 1/3 {v1, v4, v5} 1/4 {v5} 1/2

{v3, v5} {v5} 1/2 {v4, v5} 1/3 {v4, v5} 1/3 ∅ 1

{v4, v5} {v1, v4, v5} 0 {v4, v5} 0 {v1, v2, v4} 0 {v4, v5} 0

{v1, v2, v3} {v1, v4, v5} 3/5 {v4, v5} 3/5 {v4, v5} 3/5 {v4, v5} 3/5

{v1, v2, v4} {v5} 3/4 {v4, v5} 1/2 {v1, v4, v5} 1/4 {v4, v5} 1/2

{v1, v2, v5} {v1, v4} 1/2 {v4, v5} 1/2 {v1, v4, v5} 1/4 ∅ 1

{v1, v3, v4} {v4, v5} 1/2 {v4, v5} 1/2 {v4, v5} 1/2 {v4, v5} 1/2

{v1, v3, v5} {v1, v4, v5} 1/4 {v1, v4, v5} 1/4 {v1, v4, v5} 1/4 {v1, v4, v5} 1/4

{v1, v4, v5} ∅ 1 ∅ 1 ∅ 1 ∅ 1

{v2, v3, v4} {v1, v4, v5} 2/5 {v4, v5} 1/2 {v1, v4, v5} 2/5 {v4, v5} 1/2

{v2, v3, v5} {v5} 2/3 {v4, v5} 1/2 {v4, v5} 1/2 {v5} 2/3

{v2, v4, v5} {v1, v4, v5} 1/4 {v4, v5} 1/3 {v1, v4, v5} 1/4 {v4, v5} 1/3

{v3, v4, v5} {v1, v4, v5} 1/4 {v4, v5} 1/3 {v1, v4, v5} 1/4 {v4, v5} 1/3

{v1, v2, v3, v4} ∅ 1 {v4, v5} 2/5 {v4, v5} 2/5 ∅ 1

{v1, v2, v3, v5} {v1, v4, v5} 2/5 {v4, v5} 3/5 {v1, v4, v5} 2/5 {v4, v5} 3/5

{v1, v2, v4, v5} ∅ 1 ∅ 1 ∅ 1 ∅ 1

{v2, v3, v4, v5} {v1, v4, v5} 2/5 {v4, v5} 1/2 {v1, v4, v5} 2/5 {v4, v5} 1/2
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Table A2. Comparison between the lower approximations, upper approximations, j-boundary and
j-accuracy measures by using Güler’s approach [28] and our approach for j = l.

V(H)

Güler’s Approach Our Approach

N
¯

*I

ll
(V(H)) N*I

ll (V(H)) B*I
l (V(H)) σ*I

Nl
(V(H)) C

¯
*I

ll
(V(H)) C*I

ll (V(H)) B*I
Cl
(V(H)) σ*I

Cll
(V(H))

{v1} {v1} {v1, v2, v3} {v2, v3} 1/3 ∅ {v1, v3} {v1, v3} 0

{v2, v5} {v5} {v2, v3, v5} {v2, v3} 1/3 {v2, v5} {v2, v4, v5} {v4} 2/3

{v4, v5} {v4, v5} {v3, v4, v5} {v3} 2/3 {v5} V {v1, v2, v3, v4} 1/5

{v1, v2, v4} {v1, v2, v4} {v1, v2, v3, v4} {v3} 3/4 {v1, v2, v4} {v1, v2, v4} ∅ 1

Table A3. Comparison between the lower approximations, upper approximations, j-boundary and
j-accuracy measures by using our approaches for j = l.

V(H)

Our Approach According to Sl Our Approach According to Cl

S
¯

*I

l
(V(H)) S*I

l (V(H)) S*I
l (V(H)) σ*I

Sl
(V(H)) C

¯
*I

r
(V(H)) C*I

r (V(H)) B*I
Cr
(V(H)) σ*I

Cr
(V(H))

{v1} {v1} {v1, v3, v5} {v3, v5} 1/3 {v1} {v1} ∅ 1

{v4} {v4} {v4} ∅ 1 {v4} {v2, v4} {v2, v4} 1/2

{v5} ∅ {v5} {v5} 0 {v5} {v2, v5} {v2} 1/2

{v3, v5} {v3} {v3, v5} {v5} 1/2 {v3, v5} {v2, v3, v5} {v2} 2/3

{v1, v2, v3} {v1, v2, v3} {v1, v2, v3, v4} {v4} 3/4 {v1, v3} {v1, v2, v3} {v2} 2/3

{v1, v3, v5} {v1, v3, v5} {v1, v3, v5} ∅ 1 {v1, v3, v5} {v1, v2, v3, v5} {v2} 3/4
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