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Abstract: This paper introduces a modified local linear estimator (LLR) for partially linear additive
models (PLAM) when the response variable is subject to random right-censoring. In the case of
modeling right-censored data, PLAM offers a more flexible and realistic approach to the estimation
procedure by involving multiple parametric and nonparametric components. This differs from the
widely used partially linear models that feature a univariate nonparametric function. The LLR
method is employed to estimate unknown smooth functions using a modified backfitting algorithm,
delivering a non-iterative solution for the right-censored PLAM. To address the censorship issue, three
approaches are employed: synthetic data transformation (ST), Kaplan–Meier weights (KMW), and
the kNN imputation technique (kNNI). Asymptotic properties of the modified backfitting estimators
are detailed for both ST and KMW solutions. The advantages and disadvantages of these methods
are discussed both theoretically and practically. Comprehensive simulation studies and real-world
data examples are conducted to assess the performance of the introduced estimators. The results
indicate that LLR performs well with both KMW and kNNI in the majority of scenarios, along with a
real data example.

Keywords: partially linear additive models; local linear regression; right-censored data; synthetic
data; kNN imputation

1. Introduction

Partially linear models (PLMs) have gained considerable attention in the field of
survival analysis, especially for modeling right-censored data. The flexibility and capa-
bility of PLMs to capture both parametric and nonparametric components make them a
favored choice for analyzing survival data with complex relationships. The classical PLM
is expressed as follows for completely observed data with a sample size n:

yi = xT
i β+ f (ti) + εi, 1 ≤ i ≤ n (1)

where yi’s are the completely observed response values (or lifetimes in survival analysis),
xi ∈ Rn×p are the parametric covariates, β =

(
β1, . . . , βp

)T denotes the (p× 1) dimensional
vector of regression coefficients, and f (.) is the univariate unknown smooth function to
be estimated based on the values of the nonparametric covariate ti’s. Finally, εi’s are the
random error terms with (i) εi ∼ N

(
0, σ2

ε

)
and (ii) Cov(εi, xi) = 0, (iii) E[εi|xi, ti] = 0.

Without censored data, model (1) has been studied by many researchers, and some of the
notable studies include [1,2], among others. Additionally, ref. [3] proposed the local linear
regression (LLR) estimation for model (1). In the right-censored case, the response variable,
yi, is incompletely observed and censored from the right by random censoring variable
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{ci}n
i=1 under the assumption that xi and ti are completely observed. Accordingly, the

censoring mechanism and some new variables can be obtained as follows:

zi = min(yi, ci) with δi =

{
0, i f yi is censored (yi > ci)

1, i f yi is uncensored (yi ≤ ci)
(2)

where zi denotes the incompletely observed response variable with the censoring indicator
δi. Thus, instead of yi, data pairs {zi, δi} are used in the modeling procedure. There are
several important studies on the estimation of model (1) under right-censored data, as
given in (2), such as refs. [4–6], among others.

While model (1) offers reliable performance for both censored and uncensored data due
to its ability to incorporate both parametric and nonparametric components, it encompasses
only a singular nonparametric component. This constraint necessitates that researchers
select a sole nonparametric covariate from the dataset, a premise that might not align with
many real-world situations. Furthermore, adhering to this limitation could result in less
dependable estimations unless the dataset genuinely contains only one nonparametric
covariate. To improve estimation accuracy and provide a more adaptable model that
considers the right-censored response variable, zi, this research delves into the partially
linear additive model (PLAM), tailored for q nonparametric functions:

zi = β0 + xT
i β+

q

∑
j=1

f j
(
tij
)
+ εi, 1 ≤ i ≤ n (3)

Here, q represents the number of nonparametric components, a value determined
based on the nature of the relationship between tij and yi. When this relationship cannot be
adequately captured by a linear parametric component, it is treated as a nonparametric
covariate, characterized by an unknown smooth function f j

(
tij
)
. As a result, the overall

nonparametric component of model (3) is formed by the summation of these functions.
The use of PLAMs in survival analysis with right-censored data allows for more realistic
modeling of the relationship between covariates and survival outcomes by incorporating
both multiple parametric and nonparametric components. By introducing nonparametric
components, PLAMs provide a more adaptable framework for capturing potential nonpara-
metric relationships between covariates and survival times. It is crucial to acknowledge
that model (3) cannot be estimated unless the censorship problem is suitably addressed.
Numerous studies in the literature have concentrated on estimating (3) for data that is fully
observed and devoid of any censoring. Ref. [7] discussed the combination of smoothing
splines with semiparametric additive models, while ref. [8] studied the asymptotic proper-
ties of M-estimators for model (3). Additionally, Ref. [9] presented a comprehensive review
of partially linear additive models based on various smoothing techniques.

Distinct from the studies previously mentioned, this paper presents modified LLR
estimators for PLAM (3) using three distinct censoring solutions: synthetic data transfor-
mation (ST), Kaplan–Meier weights (KMW), and kNN imputation (kNNI). Through the
examination of these modified estimators and the exploration of various techniques to
tackle censorship, valuable insights can be gained, and the accuracy and effectiveness of
modeling right-censored data may be improved. This paper also explains the procedure
for obtaining these estimators, encompassing the modified backfitting technique and a
non-iterative approach, accompanied by comparative numerical studies. To the best of our
knowledge, this research fills a gap in the literature on modeling right-censored data.

The remaining part of the paper is organized as follows: In Section 2, the fundamentals
of right-censored data are presented, and solution approaches are explained. Section 3
covers the estimation of PLAM using modified LLR estimators based on various censorship
solution techniques. In Section 4, the statistical properties of the estimators are provided.
Sections 5 and 6 present simulation and real data studies, respectively. Finally, Section 7
includes the conclusions of the paper.
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2. Right-Censored Data and Solution Methods

In this section, we provide theoretical insights into modeling right-censored data. Let
F and G represent the probability distribution functions of the F observed response variable
(yi) and the censoring variable (ci), respectively. Thus, for any arbitrary data point “u”,
these functions can be expressed as follows:

F(u) = P(yi ≤ u) and G(u) = P(ci ≤ u), (4)

It is essential to highlight that the estimation procedure for the model, utilizing
the specified distributions (4), critically relies on two “censorship assumptions”. These
constrain all variables within model (2). These assumptions, as outlined by ref. [10] and
elaborated by ref. [11] in the context of right-censored regression models, hold significant
significance. In essence, the dataset must meet the subsequent criteria.

A1. yi and ci are independent.

A2. P
(
yi ≤ ci

∣∣yi, xi, tij
)
= P(yi ≤ ci|yi).

The assumption (A1) and (A2) can be explained as follows: (A2) posits that the
covariates in the model lack any information about the censorship in yi. Assumption
(A1) is particularly crucial when implementing censorship solutions. For a more in-depth
discussion, one can refer to [10]’s writings. Drawing from the aforementioned details,
this section provides the three censorship solutions. Additionally, towards the section’s
close, a figure is showcased to illustrate the practical distinctions between synthetic data
transformation and the kNN imputation methods.

Synthetic data transformation: To incorporate the impact of censorship into the model-
ing procedure, synthetic data transformation is a commonly employed solution method.
Consequently, the incomplete response pairs {(zi, δi), i = 1, . . . , n} must be substituted
for a synthetic response variable, as proposed by ref. [12]. Assuming that G is a continuous
and known function, it becomes possible to modify the observed lifetimes zi in a manner
that ensures an unbiased estimation:

ziG =
δizi

1− G(zi)
, i = 1, 2, . . . , n (5)

where ziG represents the synthetic response variable with E
[
ziG
∣∣xi, tij

]
= E

[
zi
∣∣xi, tij

]
=

xiβ+ ∑
q
j=1 f j

(
tij
)
. Nevertheless, the true distribution of the censoring variable G remains

unknown. To address this challenge, ref. [12] suggested replacing G with its estimated
version, known as the Product-Limit estimator (Kaplan–Meier estimator). This estimator
calculates the survival probabilities at the arbitrary positive data point “u” as follows:

1− Ĝ(u) = ∏n
i=1

(
n− i

n− i + 1

)I[z(i)≤u, δ(i)=0]
, u ≥ 0 (6)

where z(1) ≤, . . . ,≤ z(n) are the sorted values of the right-censored response variable z(i)
and δ(i) are the corresponding censoring indicators associated to z(i). Hence, instead of

G(zi) in (5), Ĝ(zi) is used and zĜ =
(
z1Ĝ, . . . , znĜ

)T can be obtained to fit the PLAM.
Kaplan–Meier weights: Kaplan–Meier weights (KMW), as proposed by ref. [13], are a

technique used in survival analysis to address the issue of right-censored data. The Kaplan–
Meier estimator is a nonparametric method prevalent nonparametric approach used for
estimating survival probabilities amidst censoring. Nonetheless, using standard regression
techniques on censored data can lead to biased outcomes. Stute (1993) addressed this by
presenting Kaplan–Meier weights, derived from the Kaplan–Meier survival probabilities for
each data point. These weights are used to adjust the contribution of each observation in the
regression analysis, effectively accounting for the censoring mechanism. By incorporating
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the Kaplan–Meier weights into the regression model, unbiased estimates of the regression
coefficients can be obtained.

Before computing the KMW, let us assume that z(i) denotes the ordered values of the

incomplete response values and xT
(i), δ(i) and t(i) =

(
t(i)1, . . . , t(i)q

)
are the correspondingly

ordered values. Then, Kaplan–Meier weight w(i), associating with the z(i), is computed

based on the Kaplan–Meier estimator F̂
(

z(i)
)

given in (5) as follows:

w(i) = F̂
(

z(i)
)
− F̂

(
z(i−1)

)
=

δ(i)

n− i + 1

i−1

∏
r=1

(
n− r

n− r + 1

)δ(r)
(7)

And KMW is obtained for all possible values of zi as a diagonal matrix
W = diag

(
w(1), . . . , w(n)

)
. To reach further information about (7) and implanting these

weights into the regression models, see refs. [5,6].
kNN imputation method: kNN imputation is a prevalent technique for addressing

missing data across various domains, as discussed by researchers including [14]. Addition-
ally, some studies, such as ref. [15], have adapted the kNN imputation method to manage
right-censored data. This method allows for the practical estimation of right-censored
data points without the constraints of theoretical limitations. In this context, we provide
a succinct overview of the kNN imputation technique and an algorithm tailored for the
PLAM dataset. Essentially, the kNN method is a machine learning technique that hinges
on the similarity between data points, utilizing distance metrics for predictions. The choice
of a suitable similarity measure can greatly impact the results. The Euclidean norm is
commonly employed as a measure of distance in numerous studies. The Euclidean norm
is a well-known distance and can be computed for the context of censored data points as

dE
(

xj, xi
)
=

√
∑nc

i=1

(
xc

j − xc
i

)2
where nc is the number of censored data points and xc

j and

xc
i denote the jth and ith associated values of a regressor which has a strong correlation

between response variable zi. Details are provided in Algorithm 1. For imputation, the
algorithm introduced by ref. [15] can be employed. The choice of the appropriate number
of neighbors, “k”, is pivotal, especially given the possibility of some neighbors being right-
censored. While ref. [16] suggests a smaller value for “k”, such as 1 or 2, an optimal “k”
ranging between 2 to 10 is chosen in this context to minimize the mean squared error (MSE).
This approach ensures precision in imputation, taking into account the distinct attributes of
the data.
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Algorithm 1 Algorithm for k NN imputation for the right-censored data

Inputs
I1 : Right− censored dataset zi
I2 : Censoring indicator δi
I3 : Number of nearest neigbours k
I4 : Values of predictor variable xi (high− correlated one with zi)

Output : Imputed dataset zknn =
(

zknn
1 , . . . , zknn

n

)T

1: begin
2: for (i = 1 to n)do
3: if(δi = 0) do (if data point is censored)
4: for(j = 1 to n) do
5: Find the distances between xj and xi for each censored data point
6: Sort the distances from small to large
7: for (j = 1 to k) do
8: Take the first uncensored k values of zi associated to sorted distances
9: Calculate the ithimputed value

(
zknn

i

)
with average of nearest k− records of zi

10: Replace the imputed values
(

zknn
i

)
with censored data points (zi, δi = 0)

in censored data set z = (z1, . . . , zn)

11: Return zknn =
(

zknn
1 , . . . , zknn

n

)T

12: end

As previously mentioned, Figure 1 has been created to illustrate the practical distinc-
tions between the manipulative solution techniques, namely ST and kNNI. This visual-
ization provides insights into how these methods impact the response variable and the
changes they bring about. It should be noted that the effect of KMW is not demonstrated in
the figure since it is incorporated into the objective function of the right-censored PLAM
as weights. However, further explanation regarding KMW will be provided in the next
section when obtaining the modified LLR estimators.

3. Modified Estimator for PLAM
3.1. Fundamentals of PLAM

Before explaining the modified LLR estimators, this section provides a concise overview
of the fundamental concepts of PLAM and summarizes the steps involved in utilizing the
backfitting algorithm. Additionally, we express right-censored PLAM (3) in vector and
matrix form as follows:

Z = β0 + Xβ+
q

∑
j=1

fj + ε (8)

Below, we present the explicit expressions for the vector and matrices in (8) as follows:

Z =

Z1
...

Zn

, X =

xT
1
...

xT
n

, fj =

 f j
(
tj1
)

...
fk
(
tjn
)
 and ε =

ε1
...

εn

 (9)

The literature offers only a handful of studies specifically addressing the right-censored
partially linear additive model (PLAM). In terms of estimating model (8), ref. [17] presented
the primary optimization problem for the nonparametric additive model, which mean
Xβ = 0 in model (8), and ref. [18] formulated a similar problem for (8) as follows:

min
β, f

E

[
Y− Xβ− β0 −

q

∑
j=1

fj

]2

(10)
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Accordingly, the solution expression for the jth function f j
(
zj
)

in the objective (10) can

be written as f j
(
tj
)
= E

[{
Y−∑k 6=j fk(zk)

}
| zj

]
and, based on this statement, the following

equation system can be used for the general solution of the model. Accordingly, let(
S1, . . . , Sq

)
be smoothing matrices obtained from the LLR procedure. Then, the equation

system for the estimation of model (8) can be obtained as follows:
I S1 · · · S1

S2 I · · · S2
...

...
. . .

...
Sq Sq · · · I


(nq)×(nq)


f̂1
f̂2
...

f̂q


(nq×1)

=


S1
(
Y− Xβ̂

)
S2
(
Y− Xβ̂

)
...

Sq
(
Y− Xβ̂

)

(nq×1)

(11)

where β̂ denotes estimated coefficients by LLR, which is shown in Section 3.2. For further
details on (11), refer to [9]. The solution to system (11) effectively yields the estimates of the
functions

{
f j
(
zj
)}q

j=1. However, it is evident that inverting the matrix on the left-hand side
of (11), which comprises the smoothing matrices, becomes infeasible if the dimension of
(nq× nq) is sufficiently large. As the dimension grows, solving the system in (11) becomes
progressively more challenging, potentially reaching a point where it is unmanageable and
cannot be directly addressed (refer to [18]).

Hence, in practical applications, the system (11) is typically solved using the backfitting

method, incorporating initial-valued components notated as
{

f̂
0
j

}q

j=1
. Consequently, the

LLR estimators are derived by the modified backfitting algorithm, which is given at the
end of Section 3.

3.2. Local Linear Regression

Local linear regression (LLR) is a widely employed smoothing technique for nonpara-
metric, semiparametric, and additive models. Its effectiveness has been demonstrated
across diverse domains, such as medical research, engineering, and the analysis of time-
to-event (or survival) data in time-series studies. In this section, we present three LLR
estimators for the partially linear additive model (PLAM) described in (8), employing
the introduced censorship solution methods. These estimators are derived using a mod-
ified backfitting algorithm. Local linear regression (LLR) is a kernel-based method that
differs from kernel regression in that it performs a local estimation of a line rather than
a constant. To illustrate the working procedure of LLR, let us consider a partially linear
model with a univariate function when q = 1, as given in (1), involving an unknown
smooth function f (.). The key concept of LLR is to estimate model (1) linearly within small
input intervals. To estimate the parameters of (1), the backfitting algorithm introduced
by ref. [19] is used. Accordingly, the backfitting estimators

(
β̂ , f̂

)
for model (1) where

f̂1 = ( f1(t1), . . . , f1(tn))
T by replacing the corresponding matrices that are Sh1

and H1 in the

algorithm given in Algorithm 2 can be obtained where H1 = Sh1
+

~
X(
(

~
X
′ ~
X
)−1

X’
(

I− Sh1

)
for

~
X =

(
I− Sh1

)
X. Here, Sh1

is computed based on the bandwidth parameter h1 > 0 for
LLR, which is formed by using nonparametric variables t1i’s.

In order to adapt the LLR method for estimating the parameters of the right-censored
PLAM, a closer examination of the elements of the smoother matrix Shj

is required. Let{
Shj

}q

j
be written with open form as Shj

=
(
sj1, . . . , sjn

)T , where
(
sj1, . . . , sjn

)
show the

row vectors of Shj
obtained from values of hth nonparametric covariate tj =

(
tj1, . . . , zjn

)T .

From the theory of LLR, sT
jr for any tj1 ≤ m ≤ tjn can be obtained as follows:

sT
jm = dT

1

(
tT
jmWjmtjm

)−1
tT
jmWjm
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where tjm, d1, and Wjm can be expressed as follows:

tjm =

1
(
tj1 −m

)
...

...
1
(
tjn −m

)
, d1 =

[
1
0

]

and

Wjm = diag
[

h−1K
( tj1 −m

h

)
, · · · , h−1K

( tjn −m
h

)]
(12)

Based on the provided information, it can be inferred that the extension of LLR
estimators to PLAM requires further adjustments. Moreover, it is crucial to satisfy the
standard assumptions of LLR, such as where K(.) is the kernel function, which is continuous,
and its moment is written as µi(K) ≡

∫
uiK(u)du = 0 when µ2(K) 6= 0 for odd values

of j. The density of tji can be given as gt(m) > 0, for all m ∈ sup(gt), and also, as a
common assumption, since n→ ∞ , h→ 0 , and nh→ ∞ . Finally, a second derivative
of the nonparametric smooth function f (.) exists and is continuous. Details about the
assumptions are discussed in detail in ref. [20].

In the backfitting estimation procedure, to make simple the definition of the model (8),
some restrictions on

{
f j
(
tij
)}q

j=1 are needed. At first, E
[

f j
(
tij
)]

= 0 is assumed. Secondly,

the parametric covariates xT
i ’s and right-censored response values zi’s are assumed to be

scaled around zero. In order to construct the centered smoother matrix Shj
used in the LLR

estimation, these constraints are necessary. Thus, the conditional expectation of model (8)
can be expressed as follows:

E(zi|xi, ti) = β0 + xT
i β+

q

∑
j=1

f j
(
tij
)
, i = 1, . . . , n (13)

By using the modified backfitting algorithm given in Algorithm 2, solutions can be
obtained based on Shj

for PLAM parameters β and
{

fj
}q

j=1. Thus, without any censoring

adjustment, PLAM estimators
(
β̂ , f̂

)
based on the LLR are obtained.

Furthermore, it should be noted that ref. [20] presented a non-iterative formulation
equivalent to the backfitting algorithm based on an additive smoother matrix SA = ∑

q
j=1 S ∗j

to demonstrate the LLR estimation process in the absence of censorship issues, which

reveals the relationship between Z and f̂
A

= ∑
q
j=1 f̂j. Here, S∗j is computed from the

equation system (11) based on the Shj
(see ref. [9]). Additionally, this information elucidates

the connection between a unique solution and the iterative backfitting process.
Accordingly, LLR estimators for PLAM can be found as for both ST and kNNI by

replacing Z by ZST and ZkNNI :

β̂
A
=

(
XT

~
X
)−1

XT ~
Z (14)

f̂
A
= SA

(
Z− α0 − Xβ̂A

)
(15)
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Algorithm 2 Modified Backfitting Algorithm for Right-Censored PLAM

Inputs: β0 = E(Zi) = Z; X : (n× p)-dimensional covariates of parametric component

Z : (n× q)-dimensional scaled nonparametric covariates;
{

f (0)k

}q

k=1
: Initial

smooth functions
β(0) : Initial regression coefficients; Z : (n× 1)-dim. vector of right-censored

response values
Tolerance value, tol = 0.05 and max. iteration = 100.

Outputs: Modified PLAM estimators:

O1:kNNI basis LLR estimators β̂imp and
(

f̂
imp
1 , . . . , f̂

imp
q

)
O2:ST basis estimators β̂ST and

(
f̂

ST
1 , . . . , f̂

ST
q

)
O3: KMW basis estimators β̂KMW and

(
f̂

KMW
1 , . . . , f̂

KMW
q

)
Begin
1: Initialize β and

(
f1, . . . , fq

)
as β(0) and

{
f (0)j

}q

j=1
by covariates X and t1, . . . , tq.

2: while (tol ≥ 0.05) and (i < max.iteration)
Selection of optimal bandwidth parameter hj by GCV between steps: 3–8
3: Create a sequence of tunning parameter hseq = [0.01, 1.5] for determined length
4: for (l in 1 : length) do
5: Compute the smoothing matrix S(l)

hseq
.

6: if censorship solution is KMW

7: Compute
~
X and H(l)

j = S(l)
hseq

+
~
X(
(

~
X
′
W

~
X
)−1

XTW
(

I− S(l)
hseq

)
where

~
X =

(
I− S(l)

hseq

)
X

8: Else

9: Compute
~
X and H(l)

j = S(l)
hseq

+
~
X(
(

~
X
′
W

~
X
)−1

XTW
(

I− S(l)
hseq

)
where

~
X =

(
I− S(l)

hseq

)
X

10: Calculate GCV
(

h(l)seq

)
as given in Equation (24)

11: end
12: Select optimal ĥj which minimizes GCV

(
hj

)
for jth function fj.

13: Compute Sĥj
for each criterion (and method).

Solution of censorship problem between steps: 14–25
14: if the censorship solution is kNNI
15: Replace Z with Zimp using algorithm in Algorithm 1.
16: if the censorship solution is ST
17: Replace Z with ZST as shown in Equation (5)
18: for (j in 1 : q) do
19: if the censorship solution is KMW
20: β̂

(i)
j =

(
X′WX

)−1X′W
(

Z− β0 −∑
q
m<j f̂

(i)
m −∑

q
m>j f̂

(i−1)
m

)
21: f̂

(i)
j = Sĥj

(
Z− β0 − Xβ̂(i)j −∑

q
m<j f̂

(i)
m −∑

q
m>j f̂

(i−1)
m

)
22: Else
23: β̂

(i)
j =

(
X′X

)−1X′
(

Z− β0 −∑
q
m<j f̂

(i)
m −∑

q
m>k f̂

(i−1)
m

)
24: f̂

(i)
j = Sλ̂k

(
Y− α0 − Xβ̂(i)k −∑

q
m<k f̂

(i)
m −∑

q
m>k f̂

(i−1)
m

)
25: end
26: i = i + 1
27: tol = (nq)−1

∣∣∣∣(f(i)k − f(i−1)
k

)T
1
∣∣∣∣ where 1 = (1, . . . , 1)T .

28: end
29: Return β̂ and

(
f̂1, . . . , f̂q

)
30: end

And for KMW solution, non-iterative estimators are obtained as follows:

β̂
A
KMW =

(
XTW

~
X
)−1

XTW
~
Z (16)
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f̂
A
KMW = SA

(
Z− α0 − Xβ̂A

)
(17)

where
~
X =

(
I− SA

)
X,

~
Z =

(
I− SA

)
Z. It should be noted that the validity of

Equations (14)–(17) depends on the existence of a unique solution. Furthermore, the
vector of fitted values for LLR can be expressed as follows:

µ̂ = E[Z|X, Z ] = Ẑ = HAZ (18)

where HA = SA +
~
X
[

~
X

T ~
X
]−1

XT
(

I− SA
)

and for the KMW solution HA
KMW = SA +

~
X
[

~
X

T
W

~
X
]−1

XTW
(

I− SA
)

. Note that under completely observed data, HA is derived

by [21] for the LLR estimator of PLAM.
To effectively demonstrate and interpret each nonparametric component individually,

the introduced modified backfitting algorithm is more suitable than Equations (16)–(18),
which yield an additive outcome for the nonparametric component. Additionally, com-
puting SA

LL becomes significantly challenging as the dimension of the additive component

increases. In this paper, the modified backfitting estimators
(
β̂

A, f̂
A
)

of LLR, obtained
through an algorithm given in Algorithm 2, are employed. This approach aims to showcase

the performance of the estimated functions f̂ =
{

f̂j

}q

j=1
. In the introduced algorithm given

in Algorithm 2, to calculate the selection criterion GCV, the degrees of freedom of (DF) are
computed by DFj = tr

⌈(
I−Hj

)T(I−Hj
)⌉

= n− 2tr
(
Hj
)
+ tr

(
HT

j Hj

)
where Hj denotes

the hat matrix based on the jth nonparametric component. Also, to see details about the
algorithm given in Algorithm 2, see ref. [9].

4. Properties of the Estimator

The objective of this section is to assess the bias and variance of the modified LLR
estimators introduced in the previous section. When evaluating the performance of
the parametric component, the variances and biases of the regression coefficients are
calculated using the non-iterative solutions given in Equations (14)–(17), owing to its
theoretical simplicity.

Empirical studies can be conducted to calculate the bias and variance properties of the
estimators. However, when considering LLR as demonstrated in Equations (14)–(17), non-
iterative formulations can be employed to compute finite-sample properties for the other
two methods. In this matter, conditional bias E

[(
β̂

A −β
)∣∣∣X, t

]
and variance Var

(
β̂

A
)

are
obtained based on Equations (14)–(17).

Let us rewrite β̂A as:

β̂
A
= β+

(
XT

~
X
)−1

XT f̃
A
+

(
XT

~
X
)−1

XT
(

I− SA
)
ε

where SA = ∑
q
j=1 S∗j , and f̃

A
=
(

f̃1 + . . . + f̃q

)
for

{
f̃j =

(
I− Shk

)
fj

}q

j=1
. Then B

(
β̂

A
)

and Var
(
β̂

A
)

can be given by:

B
(
β̂

A
)
= E

[(
β̂

A −β
)∣∣∣X, t

]
=

(
XT

~
X
)−1

XT f̃
A

(19)

Var
(
β̂

A
)
= σ̂2

ε

(
XT

~
X
)−1

XT
(

I− SA
)2

X
(

XT
~
X
)−1

(20)
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And for the KMW solution, Equations (19) and (20) are given by:

B
(
β̂

A
KMW

)
= E

[(
β̂

A −β
)∣∣∣X, t

]
=

(
XTW

~
X
)−1

XTWf̃
A
KMW (21)

Var
(
β̂

A
KMW

)
= σ̂2

ε

(
XTW

~
X
)−1

XTW
(

I− SA
)2

X
(

XTW
~
X
)−1

(22)

where σ̂2
ε is the model variance estimated based on LLR and it can be computed using

the hat matrix HA or HA
KMW for the KMW solution that are defined after Equation (18). In

addition, one can replace Z by ZST or Zimp. Accordingly, σ̂2
ε is formulated as follows:

σ̂2
ε =

ZT(I−HA)T(
I−HA)Z

tr
[(

I−HA
LL
)T(

I−HA
LL
)] (23)

where the degree of freedom (DF), which is given in the denominator of (23), is calculated
by DFA = tr

[(
I−HA)T(

I−HA)] = n− 2tr
(
HA)+ tr

((
HA)T

HA
)

and HA
KMW is used

for the KMW solution. For the further details of DFA, see ref. [17]. The modified backfitting
algorithm provided in Algorithm 2 requires the estimation of the model variance for each
individual nonparametric function in order to calculate the GCV score for bandwidth
parameter selection. Consequently, if HA is replaced by Hj or HKMWj in (23), then the
individual variance estimator σ̂2

ε j
can be easily obtained. The fundamental concept behind

computing σ̂2
ε j

lies in selecting the appropriate smoothing and bandwidth parameters using
the GCV criterion, as it relies on the estimated model variance. The GCV criterion can be
summarized as follows.

GCVcriterion: Generalized cross-validation is used to obtain a minimum score based
on the optimal tuning parameter for the regression model. In terms of bandwidth selection
in additive models with LLR, ref. [22] presented a detailed work on using GCV and its
properties. Accordingly, to choose the optimal hj for jth function fj, GCV

(
hj
)

score can be
computed based on µ̂ given in (18):

GCV
(
hj
)
=

(Z− µ̂)T(Z− µ̂)
n
{

1−
(
n−1tr

(
Hj
))}2 (24)

where Hj is the hat matrix obtained for fj which is provided at the end of the Section 3.
Notice that calculating the true DFj in PLAM is asymptotically justifiable if parametric
and nonparametric covariates

(
xi, tj

)
are independent. If there is multicollinearity, then

Equation (24) may be regularized properly due to overestimated DFj.

4.1. Evaluation of Performance
4.1.1. Metrics for the Parametric Component

In this section, two metrics are presented to assess the performance of the LLR estima-
tor of the parametric component of the model β̂ that are scalar versions of the dispersion
error (SMDE) and the relative efficiency (RE), which is computed by ratio of the SMDE
values. The formulations are given below:

SMDE
(
β̂ ,β

)
= E

⌈(
β− β̂

)′(
β− β̂

)⌉
= tr

[(
MSE

(
β̂,β

))]
(25)

where MSE
(
β̂,β

)
is expressed as a summation of bias square and variance of β̂, and given by:

MSE
(
β̂,β

)
= E

⌈(
β− β̂

)′(
β− β̂

)⌉
= Var

(
β̂
)
+
[
B
(
β̂
)]2 (26)
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Then, using (25), REs of the methods on estimating β can be computed. In this paper,
methods are considered for use as censorship solution techniques for REs.

Let β̂1 and β̂2 represent the estimates of parametric components based on two different
censorship solutions. Accordingly, RE can be formulated as follows:

RE
(
β̂1, β̂2

)
= SMDE

(
β̂1,β

)
/SMDE

(
β̂2,β

)
(27)

where RE
(
β̂1, β̂2

)
< 1 indicates that β̂1 is more efficient than β̂2.

4.1.2. Metrics for the Nonparametric Component

To evaluate the quality of the estimated nonparametric component, two measures
are presented. The first measure is the root mean squared error (RMSE), which measures
the accuracy of each individual estimated function in the model. The second measure is
the averaged root mean squared error (ARMSE) which is specifically designed to assess
the performance of the overall additive component f̂ =

(
f̂1, . . . , f̂q

)
. The formulations of

RMSE and ARMSE are written as:

RMSEj

(
f j, f̂ j

)
=

√
n−1

n

∑
i=1

[
f j
(
zij
)
− f̂ j

(
zij
)]2

, 1 ≤ j ≤ q (28)

and

ARMSE
(

fA, f̂
A
)
= q−1

q

∑
j=1

RMSEj

(
fj, f̂j

)
(29)

where f = ∑
q
j=1 fj and f̂ = ∑

q
j=1 f̂j.

5. Simulation Study

The practical performance of the modified LLR estimators in the context of right-
censored PLAM with various censorship solution methods is analyzed in this section. To
achieve this, different settings for sample size (n), the number of additive nonparametric
components (q), and the level of censoring (CL) are considered. Specifically, three sample
sizes (n = 50, 100, and 200) and three levels of censoring (CL = 5%, 20%, and 35%)
are chosen. A total of eight scenarios are obtained by combining these configurations.
Additionally, a total of 24 cases for analysis are formed by using three censorship solution
methods. Moreover, accelerated failure time model estimation results are presented as
benchmark performance scores. To achieve that existing function, the survival library in R is
used. Note that the function written in R for this paper is provided via link: https://github.
com/yilmazersin13/Censored-Partially-linear-additive-models/tree/main, accessed on
9 August 2023. The simulation design and setup used in this study are designed in a manner
commonly found in the literature (see ref. [4]). Small, medium, and large sample sizes are
chosen, along with three different censoring levels, in accordance with reference articles.
Furthermore, the nonparametric component count has been determined in two distinct
ways, introducing a novel approach that differs from most similar studies (see ref. [9]).

After establishing the design, the data generation procedure for the right-censored
PLAM is outlined here. Firstly, PLAM with completely observed responses is generated as:

yi = xT
i β+

q

∑
j=1

f j
(
tji
)
+ εi, 1 ≤ i ≤ n (30)

where xT
i = (xi1, xi2)

T , is (n× 2) dimensional parametric covariate matrix with normally
distributed and independently xi’s that are generated as xi ∼ N

(
µx = 0, σ2

x = 1
)
. Also,

the vector of regression coefficients is determined as β = (1,−0.5)T . Regarding the
nonparametric component, smooth functions are generated by f1(t1) = 1− 48t1 + 218t2

1 −
315t3

1 + 145t4
1 with t1 = {(i− 0.5)/n}n

i=1 and f2(t2) = sin(2t2)+ 2e−16t2
2 with t2 = U[−2, 2]

https://github.com/yilmazersin13/Censored-Partially-linear-additive-models/tree/main
https://github.com/yilmazersin13/Censored-Partially-linear-additive-models/tree/main
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when q = 2. Note that, due to how all the variables are scaled in the simulation study, the
constant term α0 is not used throughout the section. Finally, the random error terms εi’s are
independent and identically distributed with zero mean and constant variance, which can
be shown as εi ∼ N

(
0, σ2

ε = 0.5
)
.

After generating (30), by applying the censorship procedure given in Algorithm 3,
right-censored response variable Z is generated based on random censoring variable
C = (c1, . . . , cn)

T and censoring indicator δ = (δ1, . . . , δn)
T .

Algorithm 3 Censoring Procedure

Input: Completely observed yi
Output: Right-censored dependent variable zi
1: For given censoring level (CL), produce δi = I(yi ≤ ci) from the binomial distribution
2: for (i in 1 to n)
3: If (δi = 0)
4: while (yi ≤ ci)
5: generate ci ∼ N

(
µy, σ2

y

)
6: Else
7: ci = zi
8: end (for loop in Step 2)
9: for (i in 1 to n)
10: If (yi ≤ ci)
11: zi = yi
12: Else
13: zi = ci
14: end (for loop in Step 9)

Then, right-censored PLAM is obtained with the incomplete response variable
Z = (Z1, . . . , Zn)

T . Accordingly, the following figures and tables are provided based
on the censorship solution techniques. Algorithms 2 and 3 present the results for the
performance of the parametric component estimation, specifically the SMDE and RE values,
respectively. In addition, as a benchmark method, the performance of AFT model estima-
tion based on Cox’s semiparametric proportional hazards (CPH) estimator is provided
in both simulation and real data examples. The estimates are obtained a using “Survival”
package in R.

Prior to presenting the findings, we offer a visual representation in Figure 2 that eluci-
dates the process of bandwidth selection across diverse scenarios. This illustration sheds
light on how the choice of bandwidth is intricately intertwined with the extent of censoring
and the specific methods employed for addressing censorship. The discerning eye will note
that in the context of f1, the selection of bandwidth appears to exhibit a lesser degree of
sensitivity to variations in the level of censoring and sample size. However, in the case of
the f2 function, it becomes clear that the level of censorship exerts a discernible influence
on the chosen bandwidth value. Notably, when confronted with elevated censorship levels
across all solution strategies, a preference for smaller bandwidths becomes evident. This
outcome is intuitively reasonable since, especially in scenarios involving ST and kNNI, the
structural complexity of the data to be fitted takes on a more undulating nature. Therefore,
it is evident that we can extrapolate that accounting for the degree of censorship is a pivotal
factor when navigating the terrain of bandwidth selection. These findings resonate with
prior research in this domain. Ref. [23] demonstrated similar behavior in a related context,
highlighting the sensitivity of bandwidth to censorship levels. In line with the in-depth
investigations of ref. [24], our observations underscore the need for cautious bandwidth
selection in scenarios characterized by substantial censorship, promoting the accurate
modeling of intricate data structures.
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Figure 2. Selection of bandwidth parameter (h) for different scenarios and censorship solution methods
when n = 50. In each panel, (i) and (ii) involve the selection processes for f1(t1) and f2(t2), respectively.

The results in Table 1 demonstrate that the estimation quality of the modified LLR
estimators for the parametric component β improves with lower censoring levels and larger
sample sizes across all censorship techniques. These tendencies align with the expected
theoretical behavior. Specifically, the LLR-KMW estimator exhibits dominant performance
in many simulation combinations, closely followed by the LLR-kNNI estimator with
competitive SMDE scores. However, the LLR-ST does not yield good performance. Also, as
a benchmark method for the model, SMDE scores of the CPH estimator are presented in the
table. It is evident that due to the model involving serious complexity with two different
nonparametric functions, there is a significant distance between the LLR-based estimators
and the CPH estimator, which is expected.

Table 1. Calculated SMDE values for all simulation combinations.

n CL LLR-ST LLR-KMW LLR-kNNI CPH

50
5% 0.561 0.557 0.545 0.991

20% 0.724 0.681 0.624 1.029
35% 1.084 0.738 0.744 1.173

100
5% 0.121 0.103 0.104 0.702

20% 0.140 0.122 0.135 0.764
35% 0.168 0.142 0.148 0.834

200
5% 0.027 0.024 0.026 0.471

20% 0.031 0.029 0.028 0.480
35% 0.034 0.031 0.033 0.497

Bold color denotes the best performance score.

Interestingly, in cases where n = 50 and CL = 5% or CL = 20%, the LLR-kNNI
estimator outperforms the LLR-KMW estimator. As the sample size increases, LLR-KMW
takes the lead, in accordance with its theoretical behavior. It is worth noting that due
to its fully nonparametric nature, LLR-kNNI may yield better results under different
configurations, demonstrating relative independence from specific simulation settings.
This characteristic is observed in the combination of n = 200 and CL = 20%.

Additionally, to assess the impact of censorship on the solution techniques, the increase
in SMDE scores between censorship levels is examined. The results indicate that the the
LLR-ST estimator is the most affected by censorship, which aligns with the theoretical
background of ST presented in Section 2.
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In Table 2, the calculation of the RE scores follows a decision where the nominators
represent the columns, and the denominators represent the rows. Therefore, an RE value
of less than 1 in Table 2 indicates that the method in the column is more effective than the
methods in the corresponding row. Please note that, for the sake of saving space, only
certain simulation configurations are considered in Table 2. The results in the table confirm
that LLR-KMW is more efficient than LLR-ST in all cases. Simultaneously, LLR-KMW and
LLR-kNNI exhibit similar outcomes, indicating that they are not distinctly efficient in any
simulation configurations for estimating the parametric component of the PLAM.

Table 2. Comparative RE scores for the modified LLR estimators.

n CL Method LLR-ST LLR-KMW LLR-kNNI CPH

50

5%

LLR-ST 1.000 0.992 0.970 1.766
LLR-KMW 1.007 1.000 0.977 1.779
LLR-kNNI 1.030 1.023 1.000 1.818

AFT 0.566 0.562 0.549 1.000

35%

LLR-ST 1.000 0.686 0.680 1.082
LLR-KMW 1.456 1.000 0.991 1.589
LLR-kNNI 1.468 1.008 1.000 1.576

AFT 0.924 0.629 0.634 1.000

200

5%

LLR-ST 1.000 0.974 0.918 6.333
LLR-KMW 1.025 1.000 0.942 7.125
LLR-kNNI 1.088 1.060 1.000 6.576

AFT 0.158 0.140 0.152 1.000

35%

LLR-ST 1.000 0.963 0.920 5.794
LLR-KMW 1.038 1.000 0.956 6.354
LLR-kNNI 1.085 1.045 1.000 5.969

AFT 0.173 0.157 0.167 1.000
Bold color denotes the best performance score.

Furthermore, when the censoring level is very high (CL = 35%), the RE scores deviate
from 1, making the performance differences among the LLR estimators based on the
solution techniques more apparent. Once again, it is evident that, especially for n = 50,
ST is the most sensitive technique to censorship compared with the other two methods.
Additionally, the results reveal that LLR-kNNI and LLR-KMW display similar RE scores in
every combination. In addition, in Table 2, REs of CPH show that there is a clear dominance
of LLR-basis estimators for the estimation of right-censored PLAM. This result also proves
that the introduced estimator has important potential to be an alternative estimator for the
model of interest that is used in survival analysis.

In Figure 3, the averaged values of the RE scores are displayed, confirming the in-
terpretations from Table 2. The figure also shows both the effects of censorship and the
sample size. In panel (a), the RE values are very close to each other due to the very low
censoring level (CL = 5%). Panels (b) and (c) demonstrate the change in RE scores as
the censoring level increases, with the differences between the estimators becoming more
distinct, as mentioned earlier. Consequently, the LLR-kNNI and LLR-KMW estimators are
more efficient than the LLR-ST estimator. In panel (c), the performances are once again
close to each other, reflecting the large sample size (n = 200).
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50 
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35% 0.447 0.256 0.273 0.613 0.406 0.479 

100 
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Figure 3. Bar plots of averaged RE scores.

After analyzing the parametric component, the estimation of the additive nonparamet-
ric components is presented in Tables 3 and 4. Table 3 displays the RMSE values computed
for the individual functions, while Table 4 provides the ARMSE values for all simulation
configurations, serving as a measure of the overall performance in estimating the nonpara-
metric component of the right-censored PLAM. Upon initial examination, the LLR-KMW
estimator demonstrates a significantly superior performance compared with the other two
estimators across all simulation configurations. This dominance is further evidenced by
the ARMSE results presented in Table 4, which contrast the outcomes observed in the
parametric component estimation.

Table 3. RMSE values of individual nonparametric functions for both functions f1(t1) and f2(t2).

Functions f1(t1) f2(t2)

n CL LLR-ST LLR-KMW LLR-kNNI LLR-ST LLR-KMW LLR-kNNI

50
5% 0.283 0.256 0.260 0.491 0.473 0.478
20% 0.353 0.241 0.271 0.535 0.433 0.483
35% 0.447 0.256 0.273 0.613 0.406 0.479

100
5% 0.383 0.340 0.364 0.689 0.637 0.668
20% 0.408 0.319 0.366 0.704 0.581 0.657
35% 0.466 0.323 0.371 0.754 0.527 0.655

200
5% 0.516 0.483 0.507 0.936 0.896 0.931
20% 0.537 0.438 0.514 0.967 0.800 0.927
35% 0.557 0.452 0.517 1.010 0.727 0.923

Bold color denotes the best performance score.

Table 4. ARMSE
(

f̂1, f̂2

)
values for all simulation configurations.

n CL LLR-ST LLR-KMW LLR-kNNI CPH

50
5% 0.281 0.267 0.271 0.872

20% 0.319 0.247 0.275 0.967
35% 0.374 0.233 0.276 1.008

100
5% 0.393 0.362 0.386 0.778

20% 0.402 0.334 0.377 0.814
35% 0.442 0.310 0.381 0.860

200
5% 0.544 0.519 0.539 0.775

20% 0.565 0.463 0.541 0.784
35% 0.583 0.438 0.538 0.841

Bold color denotes the best performance score.

An interesting distinction in estimating the nonparametric component is that the
performances of the introduced estimators deteriorate as the sample size increases. To
explain this phenomenon, it is crucial to note that in the estimation of PLAMs, there exists
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a balance between the estimation of parametric and nonparametric components, which
exhibits an inverse relationship. Furthermore, when data points are scattered widely
around the representative smooth curve, the bias of the fitted curve increases. Additionally,
the RMSE scores for the three modified LLR estimators are fairly similar to each other,
confirming that the modified backfitting algorithm functions effectively with the censorship
solution techniques.

Table 4 presents a strong case, confirming the dominant role of the LLR-KMW estima-
tor in estimating nonparametric components within the context of right-censored PLAM.
The success of the LLR-KMW estimator lies in its clever use of weighted estimation, which
works well for both the parametric and nonparametric aspects of PLAM. Notably, the
LLR-KMW estimator does not just improve β estimates, it also works well together with
the LLR-kNNI estimator, forming a powerful estimation duo. When we carefully analyze
Table 4 and take a close look at Figures 4 and 5, a clear pattern emerges. Both the LLR-KMW
and LLR-kNNI estimators perform very similarly when it comes to estimating the nonpara-
metric component. What is even more interesting is that both estimators outperform the
LLR-ST estimator, as these enlightening visuals below beautifully demonstrate. In terms of
estimating nonparametric components, it is naturally expected that the CPH estimator does
not show a good performance due to its theoretical structure. However, its behaviors are
similar to LLR-basis estimators in sample size and censoring level changes. In summary, the
introduced LLR-basis estimators show better performance than the classical CPH estimator.
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Figure 4. Fitted curves to show the effect of the censoring level (CL). In each panel, (i) and (ii) show
fitted curves for f1(t1) and f3(t2) respectively.

Figure 4 illustrates the behavior of the estimators under different censoring levels with
fixed sample sizes. In panels (a)–(b), the effect of the censoring level is investigated when the
sample size is small (n = 50). It can be observed that while f2(t2) is not significantly affected,
the estimate of f1(t1) is heavily influenced by the censored data points. It is important
to note that this inference is also related to the initial values

(
β(0), f(0)

)
determined in

the algorithm and their compatibility with the unknown functions f1 and f2, respectively
(see [9] for further discussions). Furthermore, the results demonstrate that the weakness
of the LLR-ST estimator (red dotted line) is clear in all four panels (a), (b), (c), and (d),
for both n = 50 and n = 200. Additionally, panels (c) and (d) support the findings of
Tables 3 and 4, leading to the conclusion that, for larger sample sizes, the fitted curves
become more sensitive to the censoring level, resulting in a decrease in their performance.
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Figure 5 investigates the effect of sample size (n) for fixed censoring levels in the
upper and lower panels, particularly for CL = 35% in panels (c) and (d), while LLR-
KMW and LLR-ST exhibit a slightly more pronounced response to increasing sample size
compared with LLR-kNNI. This result is expected due to the nonparametric nature of
kNNI. Furthermore, the changes observed in the fitted curves are more noticeable for the
estimation of f1(t1), as shown in Figure 4. Additionally, the differences between sample
sizes for the lower censoring level (CL = 5%) in panels (a)–(b) indicate that there is minimal
variation between the fitted curves for both functions.

These trends are consistent with the findings reported by ref. [25], where a similar
sensitivity of the ST basis estimator to sample size was identified in a related context. The
reaction of the kNNI, KMW, and ST estimators to sample size fluctuations aligns with
the observations made by ref. [26] reinforcing the notion that these estimators can exhibit
greater flexibility in accommodating varying sample sizes.

To assess the performance of the introduced modified LLR estimators on real-world
data and compare them with the simulation results, a real data example is presented in the
following section, focusing on the hepatocellular carcinoma dataset.

6. Hepatocellular Carcinoma Data Example

In this section, the Hepatocellular Carcinoma dataset is modeled using the modified
LLR estimators: LLR-ST, LLR-KMW, and LLR-kNNI. Their performances are compared
with similar simulation configurations presented in Section 5. The dataset was originally
presented by ref. [27] to investigate the gene expression of CXCL17 in hepatocellular
carcinoma. Ref. [6] also studied this dataset, comparing parametric and semiparamet-
ric models on right-censored data. However, their study focused on a semiparametric
model with a univariate nonparametric component using the covariate age. This pa-
per considers a more realistic partially linear additive model (PLAM) that involves two
nonparametric covariates.

The dataset consists of 227 data points and five explanatory variables: age, recurrence-
free survival (RFS), CXCL17T (CXCT), CXCL17P (CXCP), and CXCL17N (CXCN). It should
be noted that the logarithm of the response variable, overall survival time (OS), is used
in this analysis. The parametric component of the PLAM is determined by the covariates
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CXCL17T, CXCL17P, and CXCL17N. Additionally, Age and RFS are considered as nonpara-
metric covariates due to their nonlinear structures, as depicted in Figure 6. The figure also
illustrates the censored data points versus the transformed data points using the kNNI and
ST solutions. Furthermore, panels (C) and (D) display hypothetical curves that represent
the data structure and nonlinearity.
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Figure 6. Descriptive plots for the Hepatocellular Carcinoma dataset.

The dataset contains 84 right-censored OS points, indicating a censoring level of
CL = 37%. This level of censorship can be classified as heavy censoring. Therefore,
we expect that the results from the real data analysis may resemble the corresponding
simulation configuration of n = 200 and CL = 35%. Based on the information provided
above, the partially linear additive model (PLAM) for the right-censored Hepatocellular
Carcinoma dataset can be expressed as follows:

log(OSi) = β0 + β1CXCL17Ti + β2CXCL17Pi + β3CXCL17Ni + f1(Agei) + f2(RFSi) + εi (31)

where i = 1, . . . , 227, β = (β1, β2, β3) and f = (f1, f2). While estimating PLAM in (31),
log(OS) is replaced by its ST version log

(
OSĜ

)
and kNNI version log

(
OSimp

)
. Also, KMW

is applied. The outcomes of the Hepatocellular Carcinoma dataset with the modified LLR
estimators are provided in Table 5.

Table 5. Performance scores of the introduced three estimators.

LLR-ST LLR-KMW LLR-kNNI CPH

Bias(β1; β2; β3) 0.42;0.17;0.08 0.30;0.16;0.17 0.40;0.20;0.21 0.24;1.65;0.40
Var(β1; β2; β3) 0.08;0.26;0.05 0.05;0.24;0.08 0.06;0.26;0.09 0.15;0.68;0.40

SMDE 0.220 0.154 0.256 1.341
RMSE[ f1(Age)] 0.440 0.533 0.491 -
RMSE[ f2(RFS)] 0.350 0.168 0.208 -
ARMSE( f1, f2) 0.395 0.350 0.350 1.822

Bold color denotes the best performance score.

Table 5 largely confirms the findings of the simulation study and demonstrates the
superior performance of the LLR-KMW estimator in the estimation of the parametric
component. However, in contrast to the simulation study, the LLR-ST estimator also
provides results that are closer to the other two estimators, while the performance of
LLR-kNNI is less satisfactory than expected. It should be noted that these conditions may
be attributed to the relatively large sample size in terms of censored data. Additionally,



Entropy 2023, 25, 1307 19 of 22

regarding the bias of β, as anticipated, both ST and KMW yield lower values compared
with kNNI, as they theoretically promise less biased estimates. Overall, the performance
evaluation in Table 6 confirms that LLR-KMW exhibits the best results, which are evident
from the RE scores.

Table 6. Relative efficiencies; REs.

Estimator LLR-ST LLR-KMW LLR-kNNI CPH

LLR-ST 1.000 0.699 1.160 6.095
LLR-KMW 1.429 1.000 1.659 8.707
LLR-kNNI 0.861 0.602 1.000 5.238

CPH 0.164 0.114 0.190 1.000
Bold color denotes the best performance score.

In both Tables 5 and 6, the performance of benchmark CPH estimators is also provided
and, as expected, it does not show a good performance, especially in the estimation of the
nonparametric component. On the other hand, in terms of bias, Table 5 shows that CPH
has satisfying bias values but with large variances that cause large SMDE scores. This poor
performance is highly related to the lack of the ability of CPH to represent smooth functions.
RE scores highly confirm this inference. Summing up the comprehensive assessment
presented in Table 6, we encounter an unequivocal affirmation of the preeminent standing
of the LLR-KMW estimator. This affirmation is elegantly illuminated by the notable RE
scores, reflecting an ensemble of successful estimation endeavors.

In Figure 7, bar plots of the calculated relative efficiencies (RE) are presented. Con-
sistent with the findings in Table 5, LLR-KMW exhibits lower RE scores compared with
the other two estimators, which aligns with the results of the simulation study. It is worth
noting that while the difference in performance between the estimators may appear sig-
nificant, numerically they are relatively close to each other, with the RE values scattered
around one.
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After assessing the estimation of the parametric component, Figure 8 presents the
results of the estimation of the nonparametric components f1 (Age) and f2 (RFS). It is
noteworthy that in this dataset, the relative failure of LLR-kNNI and the relative success of
LLR-ST can be attributed to the structure of the nonparametric components. Both functions
f1 and f2 exhibit favorable structures for the properties of LLR-ST, such as magnifying
the magnitudes of uncensored data points and assigning zero to censored ones, as clearly
observed in panel (ii) of Figure 8.
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Figure 8. Fitted curves obtained for the Hepatocellular Carcinoma dataset. In panel (i) f (Age) is
shown and in panel (ii) involves f (RFS).

To provide a more precise understanding of the solution procedures, the ST points
and kNNI points are also included in the plots. These points illustrate why the fitted curves
tend to lie below the region where all data points are scattered, especially in panel (ii). This
is primarily influenced by the heavy censoring level, CL = 37%. Additionally, in panel (i),
one can observe the LLR-ST’s fitted curve being pulled down by the zeros. As expected,
LLR-KMW follows a balanced approach between the other two estimators, as shown
in Table 5, yielding the smallest ARMSE scores in the estimation of the nonparametric
component of the PLAM.

7. Conclusions

This paper introduces three modified LLR estimators based on different censorship
solutions: ST, KMW, and kNNI, to model the right-censored PLAM. For the solution
methods that have a theoretical background, such as ST and KMW, the statistical properties
and some asymptotic properties of LLR-ST and LLR-KMW are presented. This paper
focuses on two main objectives and successfully achieves them. The two purposes of this
study are to combine the backfitting LLR estimator with the censorship solutions and
to compare them, both theoretically and practically. The performances of the modified
LLR estimators are observed through simulation and real data studies. The following
conclusions have been drawn from this study:

• In the simulation study, the performance of the estimators is measured individually
for both parametric and nonparametric components. Regarding the parametric com-
ponent estimation, it is observed that LLR-KMW provides the best results, followed by
LLR-kNNI. On the other hand, LLR-ST does not yield good results for any simulation
configuration, and it is the estimator most affected by the censorship as its performance
dramatically changes when the censoring level increases. In this case, LLR-KMW can
be considered the most robust estimator, as it reacts to censorship in a more balanced
way compared with the other two. In addition, the introduced estimators are also
compared with the benchmark estimator for the survival model, CPH. It is observed
that the LLR-basis estimators perform better than the CPH, as discussed in Section 6.

• In the estimation of the nonparametric components, the effects of sample size and cen-
soring level are clearly different compared with the parametric component. However,
similar to the parametric component, LLR-KMW exhibits dominant performance for
both nonparametric functions. It is noteworthy that, as the sample size increases, all
three estimators tend to provide closer performances in terms of fitted curves. Further-
more, it should be noted that the performance of the introduced estimators is highly
dependent on the structure of the nonparametric component and its compatibility
with the chosen censorship solution. Hence, this paper investigates the three different
solutions in detail. Ultimately, because the CPH model lacks a smoother structural
framework, it falls short when compared with the newly introduced estimators.
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• The analysis of the Hepatocellular Carcinoma data serves as a real-world example in
this study. This dataset is selected due to its censoring level and sample size, which
align closely with one of the simulation configurations (n = 200 and CL = 35%), en-
abling a more realistic comparison. The results of the real data modeling demonstrate
that the three introduced modified LLR estimators effectively handle the estimation of
the right-censored PLAM for both parametric and nonparametric components. They
exhibit a good level of agreement with the corresponding simulation configuration,
with some minor differences. As expected, LLR-KMW yields the best results. Also,
CPH does not show a good performance except in the bias of regression coefficients,
as observed in the simulation study. Notably, one important difference between the
real data and the simulation study is that LLR-ST exhibits a surprisingly better per-
formance than LLR-kNNI in the estimation of both parametric and nonparametric
components. However, this discrepancy can be attributed to the relatively large sample
size (n = 227), and it does not imply inconsistency with the simulation results. On the
contrary, it indicates a close agreement among all performances.
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