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+e traffic congestion, which has become one of the major problems of developed and developing countries, has led to a shift in the
way public transport systems are viewed, and it has accelerated efforts to increase the efficiency of these systems. In recent studies,
several approaches, in which both user and operator benefits are evaluated together in order to increase the demand for public
transportation systems and to ensure the sustainability of these systems, are emphasized. In this study, a bilevel simulation/
optimization model is developed to optimize service headways and departure times of first buses from the beginning of the routes in
urban bus networks. At the upper level of the proposed model, a multiobjective function representing user and operator costs is
evaluated using the metaheuristic harmony search (HS) optimization technique. +e transit assignment problem, which represents
the distribution of transit users over the routes, is handled at the lower level. In the proposedmodel, the transit assignment problem is
solved by the timetable-based assignment approach with VISUM transport planning software. +e timetable-based transit as-
signment is an approach in which the perception errors within the users’ route choice are taken into consideration and the transfer
wait times can be precisely calculated.+e proposed model is applied to a real-life urban bus network of the Çorlu district (Tekirdağ,
Turkey), and the effectiveness of the model on a medium-sized urban bus system has been demonstrated. +e results show that the
user and operator benefits can be simultaneously increased by adding an initial departure offset parameter to the problem.

1. Introduction

Traffic congestion due to increasing demand for private car
use brings health and environmental problems, as well as
imposes a heavy burden on the economies of developing and
developed countries. Along with the increase in fuel con-
sumption of motor vehicles in the heavy traffic, the harmful
gases threaten human health by polluting the environment
and trigger global warming by increasing the effect of
greenhouse gases [1]. Behrens and Egenhofer [2] state that
the transportation sector is responsible for a quarter of all
greenhouse gas emissions in European countries. +erefore,
it is important to organize public transportation systems
which can be alternative to private cars in terms of safety,
reliability, comfort, and economy criteria in order to avoid
environmental and health problems and to minimize the
amount of energy required in the transport sector. Central

and local governments trying to reduce traffic congestion by
making public transportation services more attractive are
investing in public transport systems in the direction of
short- and long-term strategies as well as even taking
measures to limit individual car sales [3]. However, public
transportation systems, which are the most important so-
lution to the traffic congestion, cannot meet the increasing
travel demand due to poor planning, design, and manage-
ment. In studies evaluating the performance of public
transportation systems, it is revealed that the primary
problem related to the transit services in developing
countries is the lack of capacity during peak hours [4–6].
+is problem can be solved by increasing the fleet size and
service frequency during peak hours, which leads to an
increase in operating costs that reduces the operator profit
margins. However, in order to ensure the sustainability of
transit services, not only the users’ expectations but also the
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operator’s expectations must be met. In public trans-
portation, operators aim to achieve a certain profitability by
considering their limited budgets and available bus fleets,
while users generally expect a combination of high service
quality and minimum travel time. At this point, service
quality can be considered as a function of comfort level and
reliability, while travel time consists of in-vehicle time,
waiting time, and transfer time. +erefore, the trade-off
between user and operator objectives should carefully be
considered in public transport planning. Considering that
the conventional public transportation planning process
includes route design, timetable preparation based on the
available fleet of buses, and crew scheduling steps, accurately
determined that frequencies of bus lines play an important
role in this process. Oudheusden and Zhu [7] state that
poorly prepared timetables lead to an overloading of buses.
On the contrary, accurate timetables, which are determined
based on optimized frequencies, may reduce operating costs
and increase user benefits. In the relevant literature, several
studies concerning the optimization of service frequencies in
public transportation networks have focused on the transit
network design problem (TNDP) [8–20]. In the TNDP,
which is generally formulated as the minimization of the
sum of user and operator costs, the optimal transit routes
and associated frequencies are sought. On the contrary, there
are few studies that deal with the service frequencies for fixed
bus route configurations [7, 21, 22].

Baaj and Mahmassani [11] developed a Transit Routes
Analyst (TRUST) program in order to solve the TNDP. In
their study, the TNDP was formulated as the minimization
of an overall cost measure including operator costs and user
costs. +e former was considered as total trip time of all
services during the analysis period. On the contrary, user
costs were taken into consideration as the total travel time
for all transit users, which requires the assignment of the
origin-destination (O-D) matrix to the transit routes. At this
point, a lexicographic strategy, which was previously pre-
sented by Han and Wilson [23], was adopted in TRUST. In
this strategy, it was assumed that the users avoid transfers
when choosing their routes among competing ones between
their origins and destinations. From this point of view, the
number of transfers and trip times incurred on different
alternative choices were evaluated during the assignment
process. In this context, all travel demands were assigned to
the route with the least number of transfers, while a “fre-
quency share” rule, which was developed by Lampkin and
Saalmans [8], was applied if there is at least one alternative
whose trip time is within a threshold of the minimum trip
time. In TRUST, total travel time of a journey with one
transfer was calculated as the sum of waiting times for buses
in the first and second routes, in-vehicle travel times, and a
fixed transfer penalty. Note that the waiting time for a bus
route was assumed to be half of the headway on the route,
while the transfer penalty was 5 minutes of equivalent in-
vehicle travel time. In another study by Baaj and Mah-
massani [12], in which a route generation algorithm (RGA)
was developed based on the framework of artificial
intelligence/operations research hybrid solution approach,
was also built on TRUST and its assumptions on transit

assignment problem. Chakrobotry and Dwivedi [13] de-
veloped a genetic algorithm- (GA-) based solution technique
to the solution of the TNDP. In the study, it was stated that,
unlike previous studies concerning the route network de-
sign, an optimization tool was primarily used to minimize
the reliance on heuristics. At the end of the study, a brief
comparison with the results of the study by Mandl [9] and
Baaj and Mahmassani [24] was provided to show the ef-
fectiveness of the proposed methodology. Szeto andWu [14]
proposed a hybrid solution method, in which GA was
employed for the solution of the route design problem, while
a neighbourhood search heuristic was used to search for the
optimal set of frequencies. In the study, the average travel
time was calculated based on the assumptions of the transit
assignment in the study of Baaj and Mahmassani [11], and
the proposed method was applied to the Tin ShuiWai (Hong
Kong) bus network. +e results showed that the total travel
time could be reduced up to 23% in comparison with the
current status of the Tin Shui Wai bus network. Nikolic and
Teodorovic [15] solved the TNDP using the bee colony
optimization (BCO) algorithm. In the study, three objective
functions, which are total travel time, unsatisfied demand,
and total number of buses required to meet the demand,
were minimized.+e transit assignment problem was solved
based on the frequency share method, and the obtained
results were compared with the previous models concerning
the TNDP. Unlike the abovementioned studies, some re-
searches considered different assignment approaches.
Mumford [16] assumed that the transit demand assigned to
the routes with the shortest travel times and total travel time
includes a constant transfer penalty and in-vehicle travel
time. In the study, waiting times of users were ignored.
Additionally, vehicle frequencies were not considered, and it
was assumed that there were sufficient buses when solving
the TNDP. Afandizadeh et al. [17] developed a GA-based
model which is capable of optimizing bus assignment at
depots. In the study, TNDP was formulated as a combi-
nation of user and operator costs. User costs were repre-
sented by the combination of total travel time and
unsatisfied demand cost, while the operator cost included
empty seat costs, dead-head trip costs, and total travel time
cost. +e transit assignment problem was solved based on
the logit route choice model, in which waiting time was
assumed to be half of the headway on the corresponding bus
route. In a more recent study, Owais and Osman [18]
employed GAs for the solution of the TNDP. Recently, Buba
and Lee [19] applied the differential evolution approach to
the solution of TNDP. In the study, the sum of total travel
time and unmet demand is minimized. Ruano-Daza et al.
[20] developed a global-best harmony search-based solution
method for TNDP. +e proposed model is applied to a real
bus rapid transit system to minimize total network travel
time and waste bus capacities simultaneously. Although the
conventional TNDP has been considered as design of routes
and setting of frequencies on a transit system, some re-
searchers have handled the TNDP within the frequency
setting, namely, the “bus scheduling” perspective. Kidwai
et al. [21] presented a two-level method for vehicle sched-
uling. In the first level of the model, minimum service
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frequencies were determined regarding the load feasibility
constraint. On the contrary, the required fleet size was
minimized using GA in the second level. In the study, the
transit assignment problem was solved based on the pro-
cedure presented by Baaj and Mahmassani [11]. Ruisanchez
et al. [22] developed a bilevel solution method for optimal
bus sizes and frequencies in urban transit networks. At the
upper level, a cost function representing the costs of users
and operators was minimized. In the study, user cost
function was formulated as a weighted sum of total transfer
time, total access time, total in-vehicle time, and total
waiting time. On the contrary, the transit assignment
problem was solved using ESTRAUS™ traffic simulation
software.

As can be seen from the literature review, the TNDP has
been formulated as either both route design and frequency
setting or only frequency setting in urban transit networks.
Additionally, the frequency share method has widely been
accepted for the solution of the transit assignment problem.
It may be a reasonable approach to distribute the demand
regarding the service frequencies. However, considering the
exact waiting time at the origin, a transfer point may provide
more realistic results instead of considering it as half of the
headway since the passengers have better knowledge owing
to the intelligent transportation systems and mobile appli-
cations nowadays. Doğan and Özuysal [25] state that excess
waiting times in urban bus systems may lead to a change in
transit users’ route choice. Another widely accepted ap-
proach is the assumption of users’ choice of routes with the
shortest travel time. However, some users may choose some
routes with longer travel times considering the level of
service (i.e., comfort level and route environment), daily
habits, or incomplete information.+erefore, it may bemore
appropriate to take the stochastic nature of users’ route
choice behaviour into consideration.

In this study, a bilevel simulation/optimization method
is proposed to determine headways on bus routes and de-
parture times of first buses from the beginning of the routes
in urban bus networks. At the upper level, a multiobjective
function representing the weighted sum of user and operator
costs is minimized, while the transit assignment problem is
solved using VISUM® transportation planning software at
the lower level. Since headway and offset variables are in-
tegers, the TNDP is formulated as the integer programming
problem, and the harmony search (HS) optimization al-
gorithm is used for the solution. One of the novelties of our
approach is the use of timetable-based assignment in which
the actual transfer wait times, and the coordination of the
timetable is taken into account. Moreover, by adding the
offset parameter, which represents the departure time re-
lationship between bus operations, effects of the co-
ordination between bus operations are investigated.

Headway and departure offset optimization problem and
related notations are given in the next section. Subsequently,
the proposed model and the implementation of the HS
algorithm are provided in Section 3. Section 4 presents some
numerical applications on a medium-sized real bus network.
Results and future directions are presented in the last
section.

2. Problem Formulation

Effects of headways and departure times on transfer waiting
time and total travel time are illustrated in Figure 1.

As can be seen from Figure 1(a), a user, who travels from
the origin to destination, can directly complete his travel on
Bus Line 1 (BL1). However, he may transfer to Bus Line 2
(BL2) at Stop Point (SP) to reach the destination. It can be
seen in Figure 1(b) that the average speed of BL2 is higher
than that of BL1.+us, a user that boards on BL1 at 06:00 can
arrive to the destination at 06:40 if he transfers to BL2 at SP;
otherwise, he arrives at 06:55 via BL1. +erefore, it may be
possible to reduce total travel time by transferring a faster
transit line with a reasonable transfer waiting time, and each
travel alternative can be called a “connection” [26]. At the
second departure of BL1, there is not any transfer possibility.
+us, there is only one connection for a user who boards on
BL1 at 06:55. Changes on headways and departure times of
transit routes may lead to new connection alternatives or loss
of some connections. Reducing headways of BL1 and BL2
provide shorter travel times for transit users. However, this
leads to an undesirable situation from the operator’s per-
spective due to the increasing fleet requirement and oper-
ational costs. +erefore, investigating the trade-off between
user and operator costs is an important issue. In this section,
a multiobjective optimization problem, which takes this
issue into account, is proposed.

Considering the user and operator costs, the proposed
optimization problem is formulated as a biobjective mini-
mization problem as given in the following equations:

min Z � D1 􏽘
i∈O

􏽘
j∈V

􏽘
k∈G

OWTij

k + IVTij

k + TWTij

k􏼐 􏼑

+ D2 􏽘
i∈N

int
T− θi

hi

􏼠 􏼡li􏼠 􏼡 + 􏽘
i∈N

Pi,

(1)

subject to hmin ≤ hi ≤ hmax, (2)

0≤ θi ≤ hi − 1, (3)

􏽘
i∈N

int
ti

hi

􏼢 􏼣 + 1≤W. (4)

+e objective of the proposed problem is to minimize the
weighted sum of the total passengers’ travel time (including
in-vehicle travel time and transfer wait time), total service
kilometres (service km) covered by transit vehicles and a
penalty term. Herein, Constraint (2) ensures that the head-
ways on each transit route should satisfy prespecified mini-
mum and maximum allowable values. Constraint (3) ensures
that the offset of the first departure on a particular route must
be less than the departure headway on the same route.
Constraint (4) ensures that the required fleet size cannot
exceed the available fleet size. +e third term on the right side
in equation (1) represents a penalty value arising from the
capacity violation on routes and it is formulated as follows:
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Pi �
ϕ ui −xi,max􏼐 􏼑, if xi,max > ui,

0, otherwise.

⎧⎨

⎩ (5)

In order to calculate in-vehicle travel time, transfer wait
time, and the penalty term, which is a function of maximum
passenger loads on bus routes, in the objective function
given in equations (1)–(4), distribution of passengers on the
transit network must be calculated, which refers to the
solution of the transit assignment problem. +e general
assumption is that transit users choose the route with the
shortest travel time between O-D pairs. However, in reality,
some routes with longer travel times may be chosen by some
users based on their level of service expectations, daily
habits, or by incomplete information. Furthermore, some
travels with one transfer between a certain O-D pair may
take a shorter time than a travel with a zero transfer (or
direct) transit route serving between the same O-D pair.
+erefore, it may be useful to employ an approach which is
closer to reality than the lexicographic strategy represented
by Han andWilson [23]. In this study, the transit assignment
problem is solved based on the timetable-based assignment
approach of the VISUM transportation planning tool. +is
approach is similar to the stochastic traffic assignment that a
small part of the travel demand is assigned to suboptimal
routes based on the route choice model [26]. +e timetable-
based assignment consists of two parts. Possible connections
are investigated using the branch-and-bound algorithm at
the first stage, while the passenger assignment is carried out
based on a connection choice model at the second stage. +e
major advantages of using a timetable-based assignment are
that the coordination of the timetable is taken into account
by calculating the actual transfer wait times, and actual
decision of the passengers can be represented realistically.
Furthermore, by creating a root function, passengers can be
assumed to have better knowledge of timetables. +us, a
more factual origin wait time, which has widely been taken
into account as half of the mean headway in previous re-
search, can be determined. After completing the connection
search process (see [26] for details), the passenger assign-
ment can be carried out as explained below:

+e number of passengers using each bus route can be
calculated based on the following equation:

xi � 􏽘
i∈O

􏽘
j∈D

􏽘
k∈G

q
ij

R
ij

k δik. (6)

Choice probability of connection k between origin i and
destination j can be calculated based on the following
equation:

R
ij

k �
B

ij−β

k

􏽐k∈GB
ij−β

k

. (7)

Impedance of connection k in a time interval a is cal-
culated as follows:

B
a
k � OWTij

k + IVTij

k + TWTij

k + cv
ij

k . (8)

3. Model Development

In this study, a bilevel solution model is developed for
optimizing timetables in urban bus networks considering
the interaction between users and operators. In the last
decades, several optimization algorithms have been de-
veloped to deal with complex engineering optimization
problems. Among these algorithms, genetic algorithms,
simulated annealing, particle swarm optimization, ant col-
ony optimization, and harmony search are the most popular
optimization techniques [27]. In this context, the proposed
model is formulated within the solution framework of the
metaheuristic HS optimization technique, which has been
developed by Geem et al. [28] and has widely been used to
the solution of complex civil engineering optimization
problems [29–35]. +e HS algorithm inspires from a
spontaneous performance of a musical group. In an or-
chestra, each musician seeks for a note that leads to the most
pleasing harmony when playing together. Similarly, par-
ticular values of decision variables, which lead the objective
function to reach the global optimum solution, are sought in
an optimization process. According to the basic assumption

BL2

Origin

DestinationSP (transfer station)

BL2

BL1

BL1

(a)

06:00

06:30

07:00

07:30

Origin

08:00

SP Destination

06:23
06:25

06:41

06:55

07:21

07:40

08:01
08:10

07:05
07:08

07:38
07:45

06:10

06:55

07:25

(b)

Figure 1: An example of (a) bus network and (b) graphical timetable.
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of the HS technique, a musician can improvise a note in
three different ways, which are as follows:

(i) Playing a completely random note
(ii) Reselecting any note that he has taken in his

memory by playing so far
(iii) Selecting a note from the neighbour of a note that he

has played so far

Similarly, the value of a decision variable can be de-
termined in three ways, which are as follows:

(i) Selecting a value chosen randomly from the possible
upper and lower bounds

(ii) Selecting a value from harmony memory
(iii) Assigning a value in a specific neighbourhood to a

value selected from harmony memory

As can be seen above, while an orchestra improvises new
harmonies during a musical performance, the HS algorithm
generates new solution vectors during the optimization
process. In this context, the general layout of the proposed
HS-based model is illustrated in Figure 2.

It can be seen in Figure 2 that the solution of the bio-
bjective optimization problem is carried out at the upper
level, while the transit assignment problem is solved at the
lower level of the proposed bilevel model. +e solution

procedure of the HS-based model consists of five steps, and
its stepwise flowchart is given in Figure 3.

As can be seen in Figure 3, travel demand between O-D
pairs, transit network characteristics (i.e., bus routes and
travel speeds), fleet characteristics (i.e., size and bus ca-
pacities), HS algorithm parameters, and a stopping criterion
are presented at Step 1. +ere are three HS parameters
governing the performance of the algorithm. +e first one is
harmony memory size (HMS) that represents the number of
solution vectors in harmony memory (HM). Secondly,
harmony memory consideration rate (HMCR) determines
the probability of considering the available solutions in the
HM while generating a new solution vector. +e third pa-
rameter is pitch adjustment rate (PAR), which is used when
the harmony memory consideration is realized and repre-
sents the probability of slightly adjusting by moving to
neighbouring values of a value selected from the HM. Values
of three HS parameters are also initialized at Step 1.

At Step 2, an initial harmony memory is created by
generating initial solution vectors with randomly generated
headway and offset values considering the preset upper and
lower limits. Subsequently, the transit assignment problem is
solved using VISUM for each initial solution vector to obtain
passenger loads on the bus routes. +ereafter, objective
function values of the initial solution vectors are calculated by
equations (1)–(4) and stored as given in the following equation:

h1
1 h1

2 ... h1
N−1 h1

N

h2
1 h2

2 ... h2
N−1 h2

N

⋮ ⋮ ⋮ ⋮ ⋮

hHMS−1
1 hHMS−1

2 ... hHMS−1
N−1 hHMS−1

N

hHMS
1 hHMS

2 ... hHMS
N−1 hHMS

N

􏽺√√√√√√√√√√√√√√√√􏽽􏽼√√√√√√√√√√√√√√√√􏽻
Headways

θ11 θ12 ... θ1N−1 θ1N
θ21 θ22 ... θ2N−1 θ2N
⋮ ⋮ ⋮ ⋮ ⋮

θHMS−1
1 θHMS−1

2 ... θHMS−1
N−1 θHMS−1

N

θHMS
1 θHMS

2 ... θHMS
N−1 θHMS

N

􏽺√√√√√√√√√√√√√√√√􏽽􏽼√√√√√√√√√√√√√√√√􏽻
Offsets

􏽼√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√􏽽
Solution vectors

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

Z(h, θ)1

Z(h, θ)2

...

Z(h, θ)HMS−1

Z(h, θ)HMS

􏽺√√√√√􏽽􏽼√√√√√􏽻

Objective

functions
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

At Step 3, a new solution vector, which includes
headway and offset variables, is generated based on HS
rules in a similar manner with the improvisation of a new
harmony with an orchestra. In this context, it is first de-
cided whether a decision variable value is selected from the
HM or not. +is procedure is illustrated for a headway
variable as follows:

hi
′ �

hi
′ ∈ hmin, hmax􏼂 􏼃, with probability (1−HMCR),

hi
′ ∈ h1

i , h2
i , h3

i , · · ·, hHMS
i􏽮 􏽯, with probability (HMCR).

⎧⎨

⎩

(10)

In equation (10), the value of the ith headway vari-
able in the new solution vector is either taken from the
harmony memory or randomly generated between the
possible value range with the probabilities of HMCR and
(1−HMCR), respectively. Similarly, the value of the ith

offset variable in the new solution vector is determined as
follows:

θi
′ �

θi
′ ∈ 0, hi − 1􏼂 􏼃, with probability(1−HMCR),

θi
′ ∈ θ1i , θ2i , θ3i , · · ·, θHMS

i􏽮 􏽯, with probability(HMCR).

⎧⎨

⎩

(11)

Once the value of a decision variable is selected from the
harmony memory, it is decided whether a pitch adjustment
is required or not. Considering the discrete set of decision
variables (i.e., successive integers), the pitch adjusting
process may be performed for headway and offset variables
as given in the following equations:

hi
′ �

hi
′ ± int[Rand(0, 1) × μ], with probability PAR,

hi
′, with probability(1−PAR),

⎧⎨

⎩

(12)
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θi
′ �

θi
′ ± int[Rand(0, 1) × μ], with probability PAR,

θi
′, with probability(1−PAR).

⎧⎨

⎩

(13)

Note that the procedure given in equations (10)–(13) is
applied to all decision variables in the newly created solution

vector. At the end of Step 3, the transit assignment is carried
out using VISUM for the new vector and its corresponding
objective value is calculated by equations (1)–(4). At Step 4, a
comparison is conducted between the worst solution vector
in the HM and the newly created solution vector in terms of
their objective function values. +e one with a better ob-
jective value is kept in the HM. At the last step, the solution

HS optimization technique

Headway and departure offset variables

Objective function evaluation

Termination criterion is met?

Optimal or near-optimal solution 

No
Yes

Lower level

Upper level

Network
model

Transit assignment using VISUM subject to
the headway and offset variables

Passenger loads on routes and connections

Figure 2: Layout of the proposed bilevel model.
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of the solution vectors.

Term
ination

Stop

Is termination
criterion met? 

Replace the new solution vector with
the worst one in the HM.

Does new solution vector
provide a better

objective function
value than the worst
vector in the HM?

Yes

No

Yes

No

Create a new solution vector based on HS rules
and calculate its objective function value.

Step 3 

Step 4

Step 5

O-D demand
Bus routes and travel speeds
Fleet size and bus capacities
HMS, HMCR, and PAR
Termination criterion

(i)
(ii)

(iii)
(iv)
(v)

Figure 3: Flowchart of the HS-based model.
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process is terminated if the termination criterion is satisfied.
Otherwise, the computation is continued by iterating from
Step 3 to Step 5.

4. Numerical Application

In this section, a numerical application is carried out for the
bus system of the Çorlu district (Tekirdağ, Turkey) in order
to evaluate the performance of the proposed model. Çorlu,
located within the boundaries of Tekirdağ province, is one of
the largest settlement centres in the +race region of Turkey
after Istanbul in terms of its spatial size and trade volume.
Çorlu public transportation system consists of 12 bus routes
providing regular transit services. In 2017, monthly average
of 2.5 million passenger trips were made with a fleet size of
80 buses with capacities of 50, 70, and 100 passengers.
Layout and the lengths and vehicle capacities of the bus
routes are given in Figure 4 and Table 1, respectively.

During the model computations, penalty weight is set as
ϕ � 1, impedance sensitivity is set as β � 4, transfer penalty
is set as c � 5 mins, HS parameters are set as HMS � 100,
HMCR � 0.85, and PAR � 0.05, and band width is set as
μ � 5. +e model algorithm is terminated after 3×106 it-
erations. Since 15% of all trips are between 07:00 and 09:00 in
the morning in the Çorlu transit network, analyses are
conducted for this period. Lower and upper bounds for
headway variables are considered as 5 and 30 minutes, re-
spectively. Since the objective weights D1 and D2 govern the
trade-off between user and operator costs, the proposed
multiobjective problem is solved with different weights.
Owing to the vast search space of the proposed problem,
Pareto efficient solutions are investigated by ignoring the
offset variables, and only headway variables are taken into
account. +us, first buses on all bus routes departure at the
beginning of the analysis period (i.e., 07:00 a.m.). Com-
putational results for 11 cases with different objective
weights are given in Table 2.

It can be seen in Table 2 that the total travel time is about
2217 hours for Case 1 where objective weights are D1 � 0
and D2 � 1.0. In the consecutive cases, where objective

weight D1 gradually increases, total travel time decreases and
reaches to 2126 hours for Case 11 where D1 � 1.0 and
D2 � 0. Meanwhile, the total service km value increases from
1311 to 1423 kilometres. +is reveals that the planner fully
concentrates on total service km on the transit network for
D1 � 0, while only the total travel time is considered for
D1 � 1.0. When analysing the changes in both objective
values, it can be seen that the percentage decrease in total
travel time is relatively close to the percentage increase in
total service km values except for Case 9 where total travel
time decreases about 1.4% while total service km increases
about 4.1%.+is indicates that a small amount of gain in cost
saving for users leads to a sudden spike in operator cost.
+erefore, Case 8 can be considered as the optimal solution
to the proposed biobjective problem, and optimal values for
the objective weights D1 and D2 may be considered as 0.70
and 0.30, respectively. Figure 5 illustrates the Pareto efficient
solutions for both objective functions.

In Table 3, proposed headways, maximum passenger
loads, and capacities on bus routes are given for objective
weightsD1 � 0.70 andD2 � 0.30. It can be seen in Table 3 that
all headway values are between 5 and 30 minutes and there is
no capacity violation on the transit network.

In order to investigate the effects of departure offsets in
urban bus operations, the proposed problem was solved by

Bus routes
01
02
03
04
05
06
07
08
09
10
11
12

0 600 1200 1800 m

Figure 4: Layout of the studied bus network.

Table 1: Lengths and vehicle capacities of bus routes.

Route code Length (km) Bus capacity
01 25.46 100
02 30.31 50
03 15.58 50
04 17.17 50
05 20.52 50
06 19.29 50
07 16.75 70
08 21.95 70
09 16.92 50
10 14.04 50
11 13.10 50
12 27.62 50
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considering both headway and offset variables for objective
weights D1 � 0.70 and D2 � 0.30. Convergence history of
the solution process is illustrated in Figure 6.

It can be seen in Figure 6 that the model algorithm
achieves a steady convergence after about 1.2 × 106 iterations.

In order to illustrate the robustness of the proposed ap-
proach, the model was run 100 times with different initial
solutions and random seeds. After the analyses, minimum,
maximum, and average objective function values are ob-
tained as 1901.87, 1920.28, and 1904.45, respectively. While
the minimum objective function value was reached with
55% of all runs, standard deviation was calculated as 4.54.
Computational results for the proposed model are given in
Table 4.

It can be seen in Table 4 that the total travel time is
about 2287 hours for the current bus network of Çorlu. It
can also be seen that the headway optimization leads to a
decrease of about 4.8% while both headway and departure
offset optimization can reduce total travel time of about
5.4% in comparison with the current bus network. On the
contrary, total distance covered by buses can be reduced
about 9.8% by optimizing the headways on bus routes.
Moreover, considering different departure times for the
first buses on bus routes may reduce this value about
13.3%. In Table 5, comparison between the current and
proposed bus networks is provided in terms of headway
and capacity values. Additionally, departure offsets with

Table 2: Computational results for the proposed model without departure offsets.

Case
Objective
weights Total travel

time (hour) Total service km Objective value Change in the total
travel time (%)

Change in the total
service km (%)

D1 D2

1 0.00 1.00 2216.64 1310.88 1310.88 — —
2 0.10 0.90 2216.64 1310.88 1401.45 0.00 0.00
3 0.20 0.80 2216.64 1310.88 1492.03 0.00 0.00
4 0.30 0.70 2212.47 1314.80 1584.10 −0.19 0.30
5 0.40 0.60 2206.81 1319.79 1674.60 −0.26 0.38
6 0.50 0.50 2199.70 1325.25 1762.48 −0.32 0.41
7 0.60 0.40 2191.76 1330.84 1847.39 −0.36 0.42
8 0.70 0.30 2177.95 1344.00 1927.77 −0.63 0.99
9 0.80 0.20 2147.70 1402.21 1998.60 −1.39 4.33
10 0.90 0.10 2127.55 1421.45 2055.54 −1.02 1.52
11 1.00 0.00 2125.76 1423.48 2125.76 0.00 0.00

1250

1300

1350

1400

1450

2100

2150

2200

2250

Ca
se

 1

Ca
se

 2

Ca
se

 3

Ca
se

 4

Ca
se

 5

Ca
se

 6

Ca
se

 7

Ca
se

 8

Ca
se

 9

Ca
se

 1
0

Ca
se

 1
1

To
ta

l s
er

vi
ce

 k
m

 

To
ta

l t
ra

ve
l t

im
e (

ho
ur

)

Total travel time (hour)
Total service km

Figure 5: Pareto efficient solutions for both objectives.

Table 3: Proposed headways and their corresponding maximum
load and capacity values.

Route code Headway
(minutes)

Maximum load
(no. of passengers) Capacity

01 21 413 500
02 14 439 450
03 29 217 250
04 24 299 300
05 19 337 350
06 23 276 300
07 16 489 490
08 26 234 250
09 30 194 200
10 29 97 200
11 30 108 200
12 30 72 200
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their corresponding maximum passenger loads on bus
routes are given for objective weights D1 � 0.70 and D2 �

0.30. It can be seen in Table 5 that all headway values are
between 5 and 30 minutes, all departure offset values are
between possible bounds, and there is no capacity violation on
the bus network according to the model outputs.

Number of trips observed for the current bus network
and those calculated based on the proposed model are given
in Table 6.

As can be seen in Table 6, 2934 and 169 trips are made
with one and two transfers, respectively, during the analysis
period on the current bus network of Çorlu. When optimal

headways are applied to the bus routes, the number of trips
with both one and two transfers can be reduced up to 2461
and 116 trips, respectively. +is reveals that the number of
users that can complete their travels on a particular bus route
can be increased by headway optimization. On the contrary,
when optimal departure offsets are considered, the number
of trips with one transfer increases in comparison to the bus
network only with optimal headways.+is increase indicates
that optimal departure offsets may provide a coordination
of bus services and shorter transfer wait times resulting in
a reasonable reduction in total travel time and total distance
covered by buses.
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Figure 6: Convergence history of the proposed model with headway and offset variables.

Table 4: Computational results in comparison with the current bus network of Çorlu.

Case
Total travel time Total service km

Value (hour) Improvement (%) Value (km) Improvement (%)
Current bus network 2286.64 — 1490 —
Bus routes with optimal headways 2177.95 4.75 1344 9.80
Bus routes with optimal headways and departure
offsets 2163.67 5.38 1291 13.36

Table 5: Model results.

Current bus network Model results

Route code Bus capacity
(no. of passengers)

Headway
(minutes)

Capacity (no. of
passengers)

Headway
(minutes)

Departure offset
(minutes)

Maximum load
(no. of passengers)

Capacity (no. of
passengers)

01 100 11 1100 21 0 413 600
02 50 11 550 14 0 430 450
03 50 15 400 27 16 200 200
04 50 13 500 22 7 298 300
05 50 15 400 17 1 354 400
06 50 17 400 23 0 291 300
07 70 15 560 18 9 477 490
08 70 24 350 25 23 249 280
09 50 24 250 30 12 184 200
10 50 30 200 30 13 94 200
11 50 30 200 25 5 137 250
12 50 30 200 30 24 49 200
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5. Conclusions

In this study, a multiobjective minimization problem, which
was formulated as a weighted sum of total travel time of
transit users and total distance covered by transit vehicles, was
proposed. Subsequently, a bilevel simulation/optimization
model was developed to optimize departure headway and
offset variables in urban bus networks. At the upper level of
the model, the proposed problem was solved based on the HS
optimization algorithm solution framework. On the contrary,
the transit assignment problem was solved using the
timetable-based assignment approach of VISUM transport
planning software at the lower level.

Owing to the multiobjective nature of the problem,
investigating the trade-off between user and operator
benefits is an important issue. In this context, the proposed
model was first applied to a real-life transit network with
different weights in order to analyse Pareto efficient so-
lutions and determine the optimal values of objective
weights. +ose computations were made by ignoring de-
parture offset values that require more computational ef-
forts due to the vast search space of the multiobjective
problem. It was found that the total travel time and total
service km could be reduced by 4.8% and 9.8%, re-
spectively, compared with the current bus network. Once
the optimal values of the objective weights were de-
termined, the proposed model was applied to the network
by considering both departure headway and offset vari-
ables. +e results showed that 5.4% and 13.3% improve-
ments could be achieved by including departure offset
variables in the model.

Fleet constraint considered in the proposed model ensures
that the number of buses required on particular routes does
not exceed the number of buses allocated to those routes. In
future, a bus allocation algorithm will be integrated into the
proposed model that can distribute a common fleet including
buses with different types and capacities. Integrating a route
construction algorithm into the proposed model is considered
as another future direction.

Abbreviations
Sets/indices
N: Set of routes in the transit network
O: Set of origins
V: Set of destinations
G: Set of connections
i, j, k: Indices

Parameters
IVTij

k : In-vehicle travel time on the connection k
between origin i and destination j

OWTij

k : Origin wait time on the connection k between
origin i and destination j

TWTij

k : Transfer wait time on the connection k between
origin i and destination j

li: Length of route i
Pi: Value of the penalty arising from the capacity

violation on route i
T: Length of the analysis period
hmin: Minimum headway
hmax: Maximum headway
ti: Single trip time of route i
W: Available bus fleet size
xi: Number of passengers on route i
xi,max: Maximum passenger load on route i
ui: Vehicle capacity of route i
ϕ: Penalty weight
R

ij

k : Choice probability of connection k between
origin i and destination j

δik: Element of route/connection incidence matrix
that δik � 1 if connection k uses route i, and
δik � 0 otherwise

β: Parameter for modelling the impedance
sensitivity

B
ij

k : Impedance of connection k between origin i
and destination j

Ba
k: Impedance of connection k in a time interval a

μ: Arbitrary band width
Rand(0, 1): Uniform random number between 0 and 1
v

ij

k : Number of transfers on connection k between
origin i and destination j

c: Transfer penalty
qij: Travel demand between origin i and

destination j
D1: Weight for the total travel time
D2: Weight for the total service km
Decision variable
hi: Departure headway on route i
θi: Departure offset for the first bus on route i.
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lendirme Sistemi ve Fiziksel Koşullar,” Teknik Dergi, vol. 28,
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