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Abstract Determining P and S wave arrival times while

minimizing noise is a major problem in seismic signal

analysis. Precise determination of earthquake onset arrival

timing, determination of earthquake magnitude, and cal-

culation of other parameters that can be used to make more

accurate seismic maps are possible with the detection of

these waves. Experts try to determine these waves by

manual analysis. But this process is time-consuming and

painful. In this study, a new method that enables the

determination of P and S wave arrival times in noisy

recordings is recommended. This method is based on the

hybrid usage of empirical mode decomposition and Tea-

ger–Kaiser energy operator algorithms. The results show

that the proposed system gives effective results in the

automatic detection of P and S wave arrival times.

Promisingly, the recommended system might serve as a

novel and powerful candidate for the effective detection of

P and S wave arrival time.

Keywords Empirical mode decomposition � Seismic wave

analysis � Teager–Kaiser energy operator � P and S wave

detection � Seismic wave arrival time detection

1 Introduction

Seismic signals constitute one of the most important sub-

jects in signal analysis. P and S waves, sampling frequency

and parameters such as the presence of noise in records are

essential for the analysis of seismic signals [1–4]. These

analyses provide great benefit in preventing disaster thanks

to the rapid determination of the earthquake magnitude and

prediction of earthquake occurrence time [5]. There are

two main types of seismic waves: surface waves and body

waves. Body waves can be classified into two main groups:

longitudinal waves (P waves) and transversal waves (S

waves). Particle motion and wave propagation speed of

different types of waves are also different from each other.

Particle movement of P waves is in the direction of wave

propagation. In other words, a particle affected by a P wave

makes a forward–backward vibration movement in the

direction of wave propagation while losing its equilibrium

state. The S wave particle motion is on a plane perpen-

dicular to the wave propagation direction. Therefore, the S

wave can be separated into horizontal and vertical com-

ponents [6]. The presence of noise in the records makes the

detection of P and S wave arrival times quite difficult.

These tasks are usually accomplished by an analyst who

chose arrival times based on personal experiences and

includes a large amount of pattern recognition. With the

increase in the number of digital seismic networks being

built in the world, there is an urgent need for a more

trustworthy, objective, robust, and less timewasting alter-

native automated system.

Automatic detection methods for specified purposes are

available in the literature. For this problem, Gelchinsky and

Shtivelman [7] have used the spatial correlation charac-

teristic of the signal. McCormack et al. [8] developed a

method based on feedback neural network algorithm.
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Boschetti et al. [9] identified arrival time using fractal

dimensions methods. Tong and Kennett [10] used a simple

amplitude and energy threshold for determining the P and S

wave arrival times. Wagner and Owens [11] used principal

eigenvalue as a detector in the frequency area. Withers

et al. [12] have methodically compared some trigger

algorithms. Aimed at this problem, Hidani and Yamanaka

[13] proposed sophisticated pattern recognition, adaptive,

and neural network-based approaches. Zhang et al. [14]

have used multi-scale wavelet analysis for single-compo-

nent recordings. Takanami and Kitagawa [15] have used a

dual autoregressive model approach and wavelet transfor-

mation for the determination of P wave and S wave,

respectively. Colak et al. [2] used the wavelet method and

the average energy value for the detection of this wave

arrival time in three-component stations. Hafez et al. [16]

used wavelet filter banks in order to determine P wave

arrival time. Liu [17] has used a method called wavelet

transform modulus maxima to determine P wave arrival

time. Hafez et al. [18] proposed a method based on max-

imal-overlap discrete wavelet transform to determine P

wave arrival time. In addition, other methods such as short-

and long-term average rate (STA/LTA) and improved

energy ratio [19, 20], wave polarization [21, 22], artificial

neural network [23–25], wavelet-based methods [1, 14, 18,

26], spectrogram-based methods [27, 28], autoregressive

techniques [29], local-maxima distribution [30], higher

order statistics [31, 32], and manifold-based approach [33]

have also been proposed for determining the arrival time of

these waves. Aboamer et al. [46] proposed a linear model-

based estimation method for blood pressure and cardiac

output for normal and paranoid cases. Also, Aboamer et al.

[47] used the nonlinear features of heart rate variability of

paranoid schizophrenic.

In this study, a new method has been developed for the

automatic detection of P and S wave arrival times. The

developed method is based on hybrid usage of empirical

mode decomposition (EMD) and Teager–Kaiser energy

operator (TKEO) algorithms. When the literature is

examined, it is seen that wavelet and Fourier transform

methods have been widely used in seismic signal analysis.

The advantage of EMD for time–frequency analysis [e.g.,

short-term Fourier transform (STFT) or wavelet trans-

form] compared to other existing methods is that EMD is

focused entirely on data and it does not impose any

predefined assumptions about the signal. Therefore, this

method allows the extraction of signal properties in a

natural way. EMD is an effective method for adaptive

multi-scale analysis of nonlinear and nonstationary sig-

nals. What EMD’s results will be in wave detection in

seismic signals with this interesting feature of EMD was a

matter of curiosity. In the second stage of the proposed

method, energy changes are examined with a TKEO

algorithm. A noteworthy aspect of the TKEO is that it is

almost instantaneous, because only three samples are

required each time for energy calculation. It has been

found that this nonlinear operator has many impressive

features such as simplicity, productivity, and ability to

monitor instantly changing spatial patterns. In this study,

P and S wave arrival times in the seismic signals are

detected efficiently with the application of these two

powerful methods.

2 Materials and methods

2.1 Data

The data used in this study have been taken from the

Incorporated Research Institutions for Seismology (IRIS)

database [34]. IRIS is a consortium of more than 120 US

universities devoted to the operation of science facilities

for the organization, acquisition, and distribution of seis-

mological data. The received data are composed of the

earthquake data between the years of 2000 and 2015 in

Turkey. In order to make certain that they sustain different

seismic noise conditions, these earthquakes have different

magnitudes (between 3 and 8) and occurred at different

times. Figure 1 shows the area where the earthquakes have

occurred. 2000 segments were used from more than 10,000

earthquake data. The segments are short-period and very

broadband records. Each segment that consists of 2 min

has P and S waves.

2.2 Empirical mode decomposition

EMD is a nonlinear and adaptive signal decomposition

method. EMD, unlike the Fourier transform, makes no

assumption of linearity or stability, and unlike the wavelet

transforms, it does not include base functions and fixed

frequency scale connected to these functions [35]. Com-

pared to Fourier and wavelet transforms, thanks to these

features EMD offers a more successful decomposition

especially for nonlinear and nonstationary data [3]. As a

result of EMD, a finite number of intrinsic mode functions

(IMF) and a residue are obtained from the data. IMFs

include local instantaneous frequencies, low level IMFs

include high local frequencies, and high level IMFs include

low local frequencies [3]. All the IMFs must fulfill two

conditions:

1. Zero crossing and local extreme numbers of each IMF

must be equal or the difference should be 1.

2. Means of upper and lower envelopes obtained from

maximum and minimum points must be equal to zero

at each point.
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The recursive approach used to obtain the IMFs is as

follows [36]:

1. All local extreme points of the signal are extracted.

2. Upper envelope emax m; nð Þ and lower envelope

emin m; nð Þ are obtained by interpolating maximum

and minimum points.

3. The mean envelope is obtained by the mean of the

upper and lower envelopes.

mean m; nð Þ ¼ emax m; nð Þ þ emin m; nð Þð Þ=2 ð1Þ

4. The mean envelope signal is extracted from the input

signal.

h m; nð Þ ¼ input m; nð Þ � mean m; nð Þ ð2Þ

5. It is checked whether the mean envelope signal is close

enough to zero or not (the stopping criteria of the

IMF).
PW

m¼1

PH
n¼1 eort m; nð Þj j

W � H
\s ð3Þ

In this equation, W and H are spatial dimensions; s is

the empirically determined threshold value which is

close to zero.

6. If the stop criterion is not met, the h m; nð Þ signal (from

Step 1) is selected as the new input signal and the

process is repeated. If the stop criterion is met, h m; nð Þ
is taken as new IMFi.

IMFi m; nð Þ ¼ h m; nð Þ ð4Þ

7. In order to extract the next IMF, the residual signal

from the Step 1 is taken as the new input signal and it

is resumed. This process is continued until there is not

enough extreme point to obtain envelopes from the

residual signal. The residual signal is calculated as

follows:

res m; nð Þ ¼ input m; nð Þ � IMFi m; nð Þ ð5Þ

Figure 2 shows IMF signals obtained after EMD is

applied to a seismic signal.

2.3 Mean Teager–Kaiser Energy Operator

TKEO is a powerful nonlinear operator which has been

used successfully in different applications [37, 38]. TKEO

is very interesting because of its simple definition, it is easy

to implement and appears to be very strong in certain cases

Fig. 1 Map of Turkey region

presenting the location and local

magnitude of the events logged

by different stations
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of signal processing. TKEO has a good compatibility

against high time resolution and sudden changes in signals.

An important feature of the TKEO is that it is almost

instantaneous, because only three samples are required

each moment for energy calculation. Moreover, this simple

operator allows the capturing of energy fluctuations as well

as being efficient in practice. For a given band-limited

discrete signal y n½ �, the discrete form of the TKEO intro-

duced by Kaiser [39] is given by:

w y nð Þ½ � ¼ y n� 1½ �2�y n½ �y n� 2½ � ð6Þ

where w y nð Þ½ � is called the TKEO coefficient of y n½ �. In this

study, the Mean TKEO which has been developed by

Gardner is used. Logarithmic scaling is used in this algo-

rithm for attribute normalization. The equation of Mean

TKEO is given in Eq. (7).

w y nð Þ½ � ¼ log
1

N

Xn

m¼m�Nþ3

y n� 1½ �2�y n½ �y n� 2½ �
 !

ð7Þ

where y n½ � is an seismic time series, and N is the window

length.

2.4 Proposed method: combining empirical mode

decomposition and mean Teager–Kaiser energy

operator

In this study, a new algorithm has been developed for hybrid

use of EMD and Mean TKEO algorithms in seismic signal

analysis. The algorithm has been implemented to detect P

and S wave arrival times in seismic signals. In the study,

experiments have been carried out with numerous algorithms

for the detection of the method that gives the best result. For

example, wavelet transformation, Fourier transform, and

EMD algorithms were used at the stage of obtaining features

from the signal. Different energy operators were used for the

changes in the sub-band signals. In the experiments, it is seen

that effective results are obtained in the case of EMD and

TKEO being used together. First of all, the signal is divided

into windows consisting of 64 samples. The number of

samples in the windows has been kept low for a more

accurate determination. IMF signals obtained in 5 levels

were examined with the implementation of EMD into each

window. After that, Mean TKEO values of each window

were calculated. From the observations, it is seen that P and S

waves are clearly seen especially at the maximum TKEO

values of IMF3 signals. The proposed method has been

developed with this principle. The block diagram of the

proposed method is given in Fig. 3. Accordingly, the pro-

cessing steps are listed below.

• Windowing and data preprocessing: In the first phase,

the signal is divided into windows of 64 samples. After

the windowing process, the signal is cleared of noises at

the preprocessing stage. By employing a 10-point

noncausal moving average filter, the preprocessing

stage was used to smooth the seismic signal. A 10th

order IIR Butterworth band-pass filter, at the frequency

ranges of 0.1–40 Hz, was applied to the seismic signals

to remove the noise and artifacts from seismic signals.

• Window Detection: After the preprocessing step, EMD

algorithm has been applied to each window and 5 levels

Fig. 3 The block diagram of the proposed method
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of IMF values have been obtained. The process was

carried out on IMF3 signals. Mean TKEO values of

each window were calculated. As a result of numerous

trials, a threshold level has been set for P and S wave

arrival times. Accordingly, the window in which the

Mean TKEO value is greater than 0.3 (for the first time)

is marked as the P wave arrival time. After the P wave

arrival time, the window in which the Mean TKEO

value is greater than 0.5 (for the first time) is marked as

the S wave arrival time.

• P and S arrival time detection: It is unclear at which

point of the window these two wave arrival times

occur. A new method has been developed for this. In

the corresponding windows the point where the TKEO

value is maximum, is marked as wave arrival time.

Observations performed in the experiments have led to

this assumption. According to the suggested algorithm,

if these components are considered comprehensively,

the P and S wave arrival times can be computed as;

TP=S ¼ n� 1ð Þwþ r ð8Þ

where TP=S is P or S wave arrival time, n is the number

of the detected window, w is window width, and r is the

number of data in the maximum TEOG.

3 Application and experimental results

Two examples representing all of the results most effec-

tively are discussed below.

3.1 Case study 1

The Bala–Ankara/Turkey earthquake happened at

30.07.2005/23:30:38. Information about the earthquake is

given in Table 1.

The east–west component of this seismogram is pre-

sented in Fig. 4 for ANTO station.

The signal which is given in Fig. 4 consists of a total of

8400 samples. This signal is divided into windows of 64

samples. After the preprocessing stage, EMD algorithm has

been applied to the signal and IMF values have been

obtained in 5 levels. Mean TKEO values of obtained IMF3

signals were calculated. The obtained chart is shown in

Fig. 5.

In Fig. 5, a sudden increase of energy is observed in the

windows that have been detected as P and S wave arrival

times. The 37th window where the Mean TKEO value is

greater than 0.3 for the first time is marked as the P wave

arrival time window. After the P wave arrival time, the

Table 1 Information about the Bala–Ankara/Turkey earthquake

Network Station code Magnitude Latitude Longitude Seismometer

IU ANTO 3.5 39.87� 32.79� Geotech KS 36000-I Borehole Seismometer

Fig. 4 30 July 2005, Bala/

Ankara earthquake, east–west

component, ANTO

station,Ankara,

latitude = 39.87,

longitude = 32.79,

magnitude = 3.5
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40th window where Mean the TKEO value is greater than

0.5 for the first time is marked as the S wave arrival time

window. It is unclear at exactly which point of the window

these two waves occur. Equation (4) is used for the

detection of this point. Maximum TKEO values obtained in

the corresponding windows are shown in Figs. 6 and 7 for

P and S waves. Accordingly, the arrival time of the P wave

is the 47th sample of the 37th window. The arrival time of

the S wave is the 54th point of the 40th window. According

to Eq. 4, the P wave arrival time is obtained as

(37 - 1) 9 64 ? 47 = 2351th data. This point corre-

sponds to the time 23:30:48.6. According to Eq. 4, the S wave

arrival time is obtained as (40 - 1) 9 64 ? 54 = 2550th

data. This point corresponds to the time of 23:30:56.5.

Representation of detected P and S wave arrival time

points on the signal is presented in Fig. 8. Related area

enlarged from the original signal for a better look of the

points.

The original representation of P and S wave arrival

times that are manually detected by analysts for the same

signal is presented in Fig. 9.

As shown in Figs. 8 and 9, automatically detected P and

S wave arrival times are almost identical to the result

achieved by the experts. The numerical difference between

the two results is presented in Table 2.

3.2 Case study 2

The Orta–Cankiri/Turkey earthquake occurred at

06.06.2000/02:41:50. Information about the earthquake is

given in Table 3.

The east–west component of this seismogram is dis-

played in Fig. 10 for KIEV station.

In the example that has been given, the signal consists of a

total of 8400 samples. Firstly, this signal is divided into

windows of 64 samples. The preprocessing stage has been

carried out in each window to eliminate the noises in the

signal. After that, the EMD algorithm was applied to the

signal and IMF signals were obtained in 5 levels. Because

IMF3 signals are taken into account in proposed method, the

process in the next step is carried out on only based on IMF3

signals. Mean TKEO values of these signals were calculated

in the next stage. The obtained graph is shown in Fig. 11.

These are a sudden energy increase in the windows

determined as P and S wave arrival times in Fig. 11. The

37th window where the Mean TKEO value is greater than

0.3 for the first time is marked as the P wave arrival time

window. After the P wave arrival time, the 74th window

where the Mean TKEO value is greater than 0.5 for the first

time is determined as the S wave arrival time window.

Equation (4) is used in order to determine at which point of

the window these two waves occur. Maximum TKEO

values obtained in the corresponding windows are shown in

Figs. 12 and 13 for P and S waves, respectively. Accord-

ingly, arrival time of the P wave is the 41st sample of the

37th window. Arrival time of the S wave is the 56th point

of the 74th window. According to Eq. (4), the P wave
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arrival time is obtained as (37 - 1) 9 64 ? 41 = 2345th

data. This point corresponds the time 02:44:18.5. Accord-

ing to Eq. (4), the S wave arrival time is obtained

as (74 - 1) 9 64 ? 56 = 4728th data. This point corre-

sponds the time of 02:46:15.2.

Representation of the detected P and S wave arrival time

points on the signal is presented in Fig. 14. A related area

enlarged from the original signal for a better view of the

points.

The representations of P and S wave arrival times that

were manually detected by analysts for the same signal are

presented in Fig. 15.

As shown in Figs. 14 and 15, automatically detected P

and S wave arrival times are almost identical to the result

achieved by the experts. The numerical differences

between the two results are presented in Table 4.

3.3 Results and comparison with other algorithms

The results of the study have been applied to 1000 different

earthquakes and are presented in Table 5. Error detection

between the recommended method and the manual analysis

made by the analyst has been carried out based on time.

Accordingly, the comparison was made on 4 time intervals.

These time periods are as follows, respectively: 0–0.12,

0.13–0.22, 0.23–0.7, and[0.7 s.

Correct picks in Table 5 are the success rate (error

amount is less than 0.7 s) in the comparison. Every second

Fig. 9 Marking of P and S

wave arrival times detected by

the analyst in the original time

series

Table 2 The numerical

difference between the proposed

method and manual analysis

Bala/Ankara Earthquake P wave arrival (TP)

(s)

S wave arrival (TS)

(s)

TS � TP

(s)

Analyst 23:30:48 23:30:56 8

Proposed Method 23:30:48.5 23:30:56.4 7.9

Table 3 Information about the

Orta–Cankiri/Turkey

earthquake

Network Station code Magnitude Latitude Longitude Seismometer

IU KIEV 6 50.70� 29.22� Streckeisen STS-1H/VBB Seismometer

Fig. 10 06 June 2005, Orta–

Cankiri earthquake, east–west

component, KIEV station,

Ukraine, latitude = 50.70,

longitude = 29.22,

magnitude = 6
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interval includes a percentage of this correct pick. For

example, correct picks is 91 % for P wave arrival time

detection. This indicates that 910 event out of the 1000

have been detected with an error rate of less than 0.7 s.

Within these 910 events, 77.4 % (705 events) were

between 0 and 0.12 s. 15 % (136 events) were between

0.13 and 0.22 s. 7.6 % (69 events) were between 0.23 and

0.7 s. The success of S wave arrival time detection is low

compared to P wave arrival time detection.

For better evaluation of the performance of the proposed

system, we compared it with the most commonly used and

well-known automatic phase-picking algorithms. These algo-

rithms include Allen’s algorithm [20], PAI-S and PAI-K [31].

Because these algorithms are mostly developed for identifying

the P wave arrival time, the comparison has been made

according to this arrival time. To facilitate the comparison, this

chapter provides a brief summary of each algorithm.

Allen [20] has introduced the concept of characteristic

function (CF) defined as the sum of the square of the

seismic signal and the weighted square of its first deriva-

tive. Allen’s algorithm does not directly use its CF to

determine phase arrival times, instead it uses STA/LTA

rates of CF. STA/LTA algorithm (short-time average/long-

time average) is a triggering method used in seismology for

the analysis of the seismic data. Arrival time is determined

when STA/LTA ratio exceeds the threshold which is

empirically determined. This algorithm is still used today

in practice. A detailed description of Allen’s algorithm is

also available in [20].

PAI-S and PAI-K algorithms are based on higher order

statistics, and these two algorithms take into account

especially the values of skewness and kurtosis [31].

Skewness measures the symmetry of the distribution while

kurtosis measures its tail-heaviness. The basic idea of the

method is that the background noise almost follows the

Gaussian distribution, and therefore, its skewness and

kurtosis tend to zero. In contrast, P wave arrival time

removes the Gaussian distribution of the time series and

converts the distribution to an asymmetric heavy tailed

one. As a result, the related skewness and kurtosis drasti-

cally increase. A PAI-S and PAI-K sliding time window is

used to estimate skewness and kurtosis of the seismic

path/trace. The maximum value of skewness and kurtosis is

reached only when the time window contains a sufficient

portion of the seismic signal. As described in [31], P arrival

is picked at maximum slope. However, according to

experiment, skewness and kurtosis sometimes can give

local and global maximum point (which is not necessary to

obtain) on P phase. To avoid incorrect choice, a threshold d
(see Table 6) has been used for accurate detection of the

peak point and then to use the position of that slope.

Comparisons have been carried out on the same data set.

Each algorithm has a set of its parameters. Some of these

parameters were set via optimization during the experiment

[40]. To make the results more comparable, the parameters

and all the values used for this study are given Table 6.
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The results achieved by the analyst and the results

obtained with the specified algorithms are compared in

Table 7. As can be seen from Table 7, the proposed

method has given very good results compared to others.

91 % of the incoming P waves were predicted accurately.

77.4 % of the correctly estimated P wave arrival times are

detected with an error of less than 0.11 s. The lowest

success rate was obtained with the Allen’s algorithm.

Even though Allen’s algorithm is set to detect small

variations, it failed to choose the exact location of P wave

arrival. This is because the characteristic function does

not change enough at the beginning of the P wave. PAI-

K/S algorithms gave better results compared to Allen’s

algorithm. However, these algorithms showed a lower

performance compared to proposed algorithm. These

outcomes indicate that the accuracy of the proposed

algorithm is superior to other algorithms used in seismic

networks.

Fig. 15 Original representation

of P wave and S wave arrival

times detected by analyst

Table 4 The numerical

difference between proposed

method and manual analysis

Orta/Cankiri earthquake P wave arrival (TP)

(s)

P wave arrival (TP)

(s)

TS � TP

(s)

Analyst 02:44:18 02:46:15 117

Proposed method 02:44:18.5 02:46:15.2 116.7

Table 5 Success rate of P wave

arrival time detection
Correct picks (%) 0–0.12 s (%) 0.13–0.22 s (%) 0.23–0.7 s (%)

P wave arrival time detection 91 77.4 15 7.6

S wave arrival time detection 86 75.5 13.6 10.9

Table 6 Parameters of the

algorithms used in this study
Algorithm Parameters Description Values

Allen’s picker h Sliding pitch h = 0.015 s

a STA length a = 0.2 s

b LTA length b = 10 s

C3 STA coefficient C3 = 0.25

C4 LTA coefficient C4 = 0.004

Tmin Minimum signal length required Tmin = 1.5 s

C5 Threshold 3\C5 \ 5

PAI-K h Sliding pitch h = 0.015 s

T Window length T = 3 s

d Threshold 1\ d\ 7

PAI-S h Sliding pitch h = 0.015 s

T Window length T = 3 s

d Threshold 0.5\ d\ 2.5

Table 7 Comparisons of the

proposed algorithm with other

very well-known methods

Algorithm Correct picks (%) 0–0.12 s (%) 0.13–0.22 s (%) 0.23–0.7 s (%)

Allen (%) 81 68.5 21.2 10.3

PAI-K (%) 85 76.2 19.5 4.3

PAI-S (%) 83 75.8 20.4 3.8

Proposed method (%) 91 77.4 20.2 2.4
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3.4 Limitations and future research directions

There are some limitations of this system. The success of

the proposed method has been evaluated. The usability of

the system should be increased in order to be used in real

life. There is a need for a visual interface in order for

experts to be able to use the software. For future studies,

the aim is to develop a visual interface for the proposed

model.

Also, the processing time of the program is advised to be

low in order to increase the applicability. When experi-

mental results are examined, it is seen that computation

time of the proposed method is low. For example, for 420 s

of data that consists of 8400 samples, P and S wave arrival

time points are determined within about 0.05 s. Because

the subject that has been worked on is a vital subject and it

needs quick determination such as an earthquake, further

reduction of the computation time is important. Therefore,

the aim in further studies is acceleration of processes with

CUDA programming which is a new GPU technology.

The proposed method was applied to a data set with a

high noise ratio. But, its success on less noisy or moder-

ately noisy data has not been evaluated. The success of the

proposed method on different noise levels will be evaluated

in further studies.

4 Conclusions

The purpose of this study was to develop an effective and

new method for detecting P and S wave arrival times (with

high accuracy values) which is an important problem in

seismic signal analysis and used in earthquake prediction.

The main novelty with regard to this study relates to the use

of a hybrid method which integrates an effective decom-

position method (EMD) and a strong energy operator

(TKEO). The results obtained are promising. This system

will help analysts in this field. The prominent parts of the

study are as listed below:

Both P wave and S wave arrival time detection are

possible with the proposed method. Only P arrival time

detection has been carried out in many studies in the lit-

erature. There are small numbers of studies in S wave

arrival time detection [41–45]. One of the main reasons is

that S seismic waves move at a lower rate than P seismic

waves and the noise ratio is higher than the S seismic

waves. Moreover, the first S wave arrival can be hidden in

P seismic waves [45]. The proposed system successfully

determines the arrival time of these two waves, and it will

make a significant contribution to the literature.

An algorithm based on complex mathematical calcula-

tions or based on training such as neural networks was not

used in the developed method. Because the method is

based on simple mathematical functions, it allows fast

operation of the system. The rapid detection of these two

waves is important in an area of vital importance such as an

earthquake.

The proposed hybrid systems gave better results com-

pared to other methods in the literature. It is predicted that

this proposed hybrid method will be a good source for

many studies in seismic signal analysis.
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