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ABSTRACT
In this paper, we present a numerical solution method which is based on
Taylor Matrix Method to give approximate solution of the Bagley–Torvik
equation. Given method is transformed the Bagley–Torvik equation into a
system of algebraic equations. This algebraic equations are solved through
byassistanceofMaple 13. Then,wehave coefficients of thegeneralizedTay-
lor series. So, we obtain the approximate solution with terms of the gener-
alized Taylor series. Further somenumerical examples are given to illustrate
and establish the accuracy and reliability of the proposed algorithm.
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1. Introduction

Fractional calculus has become the focus of interest for many researchers in different disciplines
of applied science and engineering because of the fact that a realistic modelling of a physical phe-
nomenon, for example viscoelasticity, heat conduction, electrode–electrolyte polarization, electro-
magnetic waves, diffusion wave, control theory, etc., can be successfully achieved by using fractional
calculus[3–5,12„17,21].

In this article, we consider the Bagley–Torvik equation which is defined by [5,6,14,16,20]

(AD2 + A3D3/2 + A0D0)y(x) = f (x) (1)

with the initial conditions

y(0) = a, y′(0) = b, (2)

whereA = m,A3 = 2A√
μρ,A0 = k andwhereμ is the viscosity, ρ is the fluid density. This equation

arises in the modelling of the motion of a rigid plate immersed in a Newtonian fluid. The motion of
a rigid plate of mass m and area A connected by a mass less spring of stiffness k, immersed in a
Newtonian fluid.

A rigid plate of massm immersed into an infinite Newtonian fluid as shown in Figure 1. The plate
is held at a fixed point by means of a spring of stiffness k. It is assumed that the motions of spring
do not influence the motion of the fluid and that the area A of the plate is very large, such that the
stress–velocity relationship is valid on both sides of the plate.
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Figure 1. Rigid plate of massm immersed into a Newtonian fluid.

The existence and uniqueness of the solution to this initial value problem have been discussed in
[4,14]. An analytical solution is possible and can be given in the form [16]

y(x) =
∫ x

0
G(x − u)f (u)du

with

G(x) = 1
A

∞∑
k=0

(−1)k

k!

(
A0

A

)k
x2k+1E(k)

1/2,2+3k/2

(
−A3

A
√
t
)
,

where E(k)
λ,μ is the kth derivative of the Mittag–Leffler function with parameters λ and μ given by

E(k)
λ,μ =

∞∑
j=0

(j + k)!tj

j!�(λj + λk + μ)
.

Note that this analytical solution involves the evaluation of a convolution integral, containing a
Green’s function expressed as an infinite sum of derivatives of Mittag–Leffler functions, and for gen-
eral functions f this cannot be evaluated conveniently[16]. For inhomogeneous initial conditions even
more complicated expressions arise. An analytical expression for the inhomogeneous case is given in
[14]. It involves multivariate generalizations of Mittag–Leffler functions and is also quite cumber-
some to handle. We are motivated by the difficulty of obtaining an analytical solution to investigate
numerical schemes for the solution of (1) with initial conditions (2) that can be relied upon to per-
form well. We seek the approximate solution of Equation (1) under the conditions Equation (2) with
the generalized Taylor series as Dkα∗ y(x) ∈ C(a, b],

yN(x) =
n∑
i=0

(x − c)iα

�(iα + 1)
(Diα

∗ y(x))x=c, (3)

where 0 < α ≤ 1 [9].
Moreover, some numerical methods have been proposed for approximate solutions of this type

equations such as the operational matrix method [8,13,19], Adomian decomposition method [10],
homotopy-perturbation method [1], collocation method [2,17] and others [7,11,15,18].
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2. Fundamental relations

In this section, we consider the fractional differential equations

m∑
k=0

Pk(x)Dkα
∗ y(x) = f (x), a ≤ x ≤ b, n − 1 ≤ mα < n (4)

with initial conditions

Di
∗y(c) = λi, i = 0, 1, . . . , n − 1, a ≤ c ≤ b, (5)

which Pk(x) and f (x) are known functions defined on a ≤ x ≤ b, λi is an appropriate constant.
We first consider the solution yN(x) of Equation (1) defined by a truncated Taylor series (3). Then,

we have the matrix form of the solution yN(x)

[yN(x)] = XM0A, (6)

where

X = [1 (x − c)α (x − c)2α · · · (x − c)Nα]

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
�(1)

0 0 · · · 0

0
1

�(α + 1)
0 · · · 0

0 0
1

�(2α + 1)
· · · 0

...
...

...
. . .

...

0 0 0 · · · 1
�(Nα + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D0α∗ y(c)
D1α∗ y(c)
D2α∗ y(c)

...
DNα∗ y(c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, we consider the differential part of Pk(x)Dkα∗ y(x) in Equation (1) and can write it as the
truncated Taylor series expansion of degree N at x = c in the form

Pk(x)Dkα
∗ yN(x) =

N∑
n=0

1
�(nα + 1)

[Diα
∗ (Pk(x)Dkα

∗ yN(x))]x=c(x − c)nα . (7)

By Liebnitz’s rule, we evaluate

Dnα
∗ [Pk(x)Dkα

∗ y(x)]x=c =
n∑

i=0

(
p
i

)
P(i)
k (c)Dnα−i

∗ (Dkα
∗ yN(x))x=c. (8)

Thus expression (7) becomes

Pk(x)Dkα
∗ yN(x) =

N∑
n=0

n∑
i=0

1
�(nα + 1)

N!
(N − i)!i!

P(n−i)
k (c)[D(k+i)α

∗ (yN(x))]x=c(x − c)nα (9)

and its matrix form

[Pk(x)Dkα
∗ yN(x)] = XPkA, (10)
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where

Pk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
P(0)
k (c)0!

�(1)0!0!
0 · · · 0

0 · · · 0
P(1)
k (c)1!

�(α + 1)1!0!
P(0)
k (c)1!

�(α + 1)0!1!
· · · 0

0 · · · 0
P(2)
k (c)2!

�(2α + 1)2!0!
P(1)
k (c)2!

�(2α + 1)1!!1!
· · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0
P(N−k)
k (c)(N − k)!

�((N − k)α + 1)(N − k)!0!
P(N−k)
k (c)(N − k)!

�((N − k)α + 1)(N − k − 1)!1!
· · · P(0)

k (c)k!
�(kα + 1)0!k!

...
. . .

...
...

...
. . .

...

0 · · · 0
P(N)

k (c)N!
�(Nα + 1)N!0!

P(N−1)
k (c)N!

�(Nα + 1)(N − 1)!1!
· · · P(0)

k (c)N!
�(Nα + 1)(N − k)!k!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

.

Moreover, let assume that the function f (x) can be written as a truncated Taylor series

f (x) =
N∑

n=0

1
�(nα + 1)

(Dnα
∗ f (x))x=c(x − c)nα . (11)

Then, we obtain the matrix form of Equation (11)

[f (x)] = XM0F, (12)

where

F = [f (c) (Dα∗ f (x))x=c (D2α∗ f (x))x=c · · · (DNα∗ f (x))x=c]T.

Thus, we obtain the fundamental matrix form of Equation (1)

m∑
k=0

PkA = M0F. (13)

2.1. Matrix representation for the initial conditions

Wewant to find the matrix representation ofDi∗yN(x) = D(i(1/α))α
∗ yN(x). Then, we write the Pk(x) =

1 and k = (i/α) in Equation (7), we obtain the matrix form of the initial conditions as

Di
∗yN(c) = D(i(1/α))α

∗ yN(c) = X(c)MkA, (14)

whereMk is a matrix that Pk(c) = 1, others is zero and k = (i/α) in PkLet us define Ui as

Ui = X(c)Mk = [ui0 ui1 ui2 · · · uiN] = [λi], i = 0, 1, . . . ,m − 1. (15)

3. Method of solution

We can write Equation (11) in the form

WA = G, (16)

where

W = [wij] =
m∑
k=0

Pk, i, j = 0, 1, . . . ,N and G = M0F.
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Consequently, to find the unknownTaylor coefficientsmatrixA, relatedwith the approximate solu-
tion of the problem consisting of Equation (1) with conditions (2), by replacing the m row matrices
(15) by the lastm rows of the matrix (16), we have augmented matrix

[W∗;G∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 · · · w0N ; (D0α∗ f (c))/�(0α + 1)
w10 w11 · · · w1N ; (D1α∗ f (c))/�(1α + 1)
...

...
. . .

... ;
...

wN−m0 wN−m1 · · · wN−mN ; (D(N−m)α
∗ f (c))/�((N − m)α + 1)

u00 u01 · · · u0N ; λ0

u10 u11 · · · u1N ; λ1

...
...

. . .
... ;

...
um−10 um−11 · · · um−1N ; λm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or the corresponding matrix equation

W∗A = G∗. (17)

So, we obtain to a system of (N + 1) × (N + 1) linear algebraic equations with (N + 1) unknown
coefficients. If rankW∗ = rank[W∗;G∗] = N + 1, then we can be write A = (W∗)−1G∗. Thus, the
matrix A is uniquely determined. Also Equation (1) with conditions (2) has a unique solution. On
the other hand, when |W∗| = 0, if rankW∗ = rank[W∗;F∗] < N + 1, then we may find a particular
solution. Otherwise if rankW∗ �= rank[W∗;F∗], then it is not a solution.

3.1. Accuracy of the solution

To investigate the convergence, we define the error function as:

eN(x) = y(x) − yN(x), (18)

where y(x) and yN(x) are the exact solution and the computed solution of the Equation (1),
respectively. Substituting yN(x) into Equation (1) leads to

(D2 + A3D3/2 + A0D0)yN(x) = f (x) + pN(x), n ∈ N, (19)

where pN(x) is the perturbation term that can be obtained by substituting the computed solution
yN(x) into Equation (1), that is,

pN(x) = (D2 + A3D3/2 + A0D0)yN(x) − f (x), n ∈ N. (20)

Now, by subtracting Equation (20) from Equation (1) and using Equation (18), the error function
eN(x) satisfies following relation

− pN(x) = (D2 + A3D3/2 + A0D0)eN(x), n ∈ N. (21)

Theorem 3.1: f be continuous functions on their domains. Suppose that for some positive M, we have

|D(N+1)αy(x)| ≤ M ∀x ∈ [0, b]. (22)

Then,

lim
N→∞ pN = 0.
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Proof: Suppose that the solution y(x) and computed solution yN(x) of Equation (1) are approximated
by their Taylor expansions about zero. Then we may write

eN(x) =
∞∑

k=N+1

xkα

�(k + 1)
(Dkαy(x))x=0, (23)

which can be represented as

eN(x) = x(N+1)α

�(N + 1)
(D(N+1)αy(ξ)), ξ ∈ (0, x) (24)

for some ξ ∈ (0, x) by generalized Taylor theorem.
Replacing eN(x) by Equation (24) into Equation (21) gives

− pN(x) = (D2 + A3D3/2 + A0D0)
x(N+1)α

�(N + 1)
(D(N+1)αy(ξ)). (25)

Therefore, we have

|pN(x)| ≤ (D(N+1)αy(ξ))
�((N + 1)α + 1)

�(Nα + 1)

×
(

b(N+1)α−2

�((N + 1)α − 1)
+ A3

b(N+1)α−3/2

�((N + 1)α − (1/2))
+ A0

b(N+1)α

�((N + 1)α + 1)

)
.

We assume A∗ = max{1,A3,A0} and under assumption, we have

|pN(x)| ≤ A∗M
�((N + 1)α + 1)

�(Nα + 1)�(Nα + 1)�(Nα + 1)
b(N+1)α

thus, the proof is complete. �

Theorem 3.2: Under the assumptions of Theorem 4.1, we have lim
N→∞ eN = 0.

Proof: Let assume

D∗ = D2 + A3D3/2 + A0D0.

Then, the Equation (21) can be written as

D∗eN(x) = −pN(x).

Under the assumption, lim
N→∞ pN = 0 and the Equation (1) has unique solution [4,14]. Then, the

operator D∗ is invertible. Hence lim
N→∞ eN = 0.

Moreover, we can easily check the accuracy of the method. Since the truncated Taylor series (3)
is an approximate solution of Equation (1), when the solution y(x) and its fractional derivatives are
substituted in Equation (1), the resulting equation must be satisfied approximately; that is, for x =
xq ∈ [a, b], q = 0, 1, 2, . . .

RN(xq) = |(D2 + A3D3/2 + A0D0)y(xq) − f (xq)| ∼= 0.

�
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4. Examples

In order to illustrate the effectiveness of the method proposed in this paper, several numerical
examples are carried out in this section.

Example 1: Let us consider the fractional integro-differential equation

a2D2
∗y(x) + a1D

3/2
∗ y(x) + a0y(x) = f (x)

with the initial conditions

y(0) = 1, y′(0) = 1.

Then f (x) = x + 1, a2 = 1, a1 = 1, a0 = 1. We seek the approximate solutions y6 by Taylor series,
for c = 0 and α = (1/2)

y6(x) =
6∑

k=0

xkα

�(kα + 1)
(Dkα

∗ y(x))x=0.

Fundamental matrix relation of this is

(P4 + P3 + P0)A = G,

where

P4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 2/

√
π 0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 2/

√
π 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 4/3

√
π

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 2/

√
π 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 4/3

√
π 0 0 0

0 0 0 0 1/2 0 0
0 0 0 0 0 8/15

√
π 0

0 0 0 0 0 0 1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

then, we obtained

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0
0 2/

√
π 0 0 2/

√
π 2/

√
π 0

0 0 1 0 0 1 1
0 0 0 4/3

√
π 0 0 4/3

√
π

0 0 0 0 1/2 0 0
0 0 0 0 0 8/15

√
π 0

0 0 0 0 0 0 1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Also, we have the matrix representation of conditions,

y(0) = [1 0 0 0 0 0 0]A = [1]

y(1) = [0 0 1 0 0 0 0]A = [1]
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then, augmented matrix becomes

[W∗;F∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0
0 2/

√
π 0 0 2/

√
π 2/

√
π 0

0 0 1 0 0 1 1
0 0 0 4/3

√
π 0 0 4/3

√
π

0 0 0 0 1/2 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

;
;
;
;
;
;
;

1
0
1
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and so we solve the this equation, we obtained the coefficients of the Taylor series

A = [1 0 1 0 0 0 0].

Hence, for N = 6, the approximate solution of Example 1 is given y6 = 1 + x which is the exact
solution of this equation.

Example 2: [11] Let us consider the fractional integro-differential equation

D2
∗y(x) + D3/2

∗ y(x) + y(x) = f (x)

with the initial conditions

y(0) = 0, y(1) = 1.

Then f (x) = x2 + 2 + 4
√
x/π . We seek the approximate solutions y6 by Taylor series, for α = (1/2)

y6(x) =
6∑

k=0

xkα

�(kα + 1)
(Dkα

∗ y(x))x=0.

Fundamental matrix relation of this is

(P4 + P3 + P0)A = G,

where

P4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 2/

√
π 0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 2/

√
π 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 4/3

√
π

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 2/

√
π 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 4/3

√
π 0 0 0

0 0 0 0 1/2 0 0
0 0 0 0 0 8/15

√
π 0

0 0 0 0 0 0 1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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then, we obtained

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0
0 2/

√
π 0 0 2/

√
π 2/

√
π 0

0 0 1 0 0 1 1
0 0 0 4/3

√
π 0 0 4/3

√
π

0 0 0 0 1/2 0 0
0 0 0 0 0 8/15

√
π 0

0 0 0 0 0 0 1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Also, we have the matrix representation of conditions,

y(0) = [1 0 0 0 0 0 0]A = [0]

y(1) = [1 2/
√

π 1 4/3
√

π 1/2 8/15
√

π 1/6]A = [1]

then, augmented matrix becomes

[W∗;F∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0
0 2/

√
π 0 0 2/

√
π 2/

√
π 0

0 0 1 0 0 1 1
0 0 0 4/3

√
π 0 0 4/3

√
π

0 0 0 0 1/2 0 0
1 0 0 0 0 0 0
1 2/

√
π 1 4/3

√
π 1/2 8/15

√
π 1/6

;
;
;
;
;
;
;

2
4/

√
π

0
0
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and so we solve the this equation, we obtained the coefficients of the Taylor series

A = [0 0 0 0 2 0 0].

Hence, for N = 6, the approximate solution of Example 1 is given y6 = x2 which is the exact
solution of this equation.

Example 3: [18] Let us consider the Bagley–Torvik equation

Dα
∗y(x) + y(x) = 0, 0 < α ≤ 2,

y(0) = 1, y′(0) = 0.

If 0 < α ≤ 1, the first initial condition is needed, while all the initial conditions are necessary
when 1 < α < 2. The exact solution of this problem is y(x) = Eα(−xα). Here Eα(z) denotes the
Mittag–Leffler function

Eα(z) =
∞∑
k=0

zk

�(αk + 1)
.
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This problem is solved by Taylor matrix method.We obtain the error estimation function forN =
27 and α = 0.5, 1.5 as, respectively:

R27(x) = 0.2E − 14 + 0.2E − 14x + 0.2E − 14x2 + 0.4E − 14x3/2 + 0.1E − 14x3 + 0.6E − 14x7/2

+ 0.1E − 16x11/2 + 0.2E − 17x13/2 − 0.1E − 18x15/2 + 0.1E − 18x8

+ 0.5E − 19x17/2 + 0.1E − 20x19/2

+ 0.1E − 20x10 + 0.2E − 21x21/20.1E − 22x23/2 − 0.433044E − 10x27/2,

R27(x) = 0.2E − 14 + 0.4E − 14x3/2 − 0.1E − 18x15/2 + 0.1E − 19x9 + 0.21E − 21x21/2

+ 0.1E − 22x12 − 0.433044E − 10x27/2.

We define the maximum errors for yN(x) as,
EN = ||y(x) − yN(x)||∞ = max{|y(x) − yN(x)|, x ∈ [0, 1]}. In Tables 1 and 2, we give some

numerical results such as comparison of maximum absolute errors, maximum error estimation val-
ues for α = 0.5, 1.5, respectively. Moreover, we compare the absolute errors with Operational Matrix
Method [18] and Present Method (N = 27) in Table 3.

Example 4: Consider the problem [2,15]

D2
∗y(x) + D3/2

∗ y(x) + y(x) = 8, x ∈ [0, 1]

subject to the initial conditions

y(0) = 0, y′(0) = 0.

Numerical results with comparison to Ref. [15] are given in Table 4.

Table 1. Compare of some numerical values for α = 0.5.

N 25 27 30

EN 10−12 10−13 10−16

||RN||∞ 10−12 10−13 10−15

Table 2. Compare of some numerical values for α = 1.5.

N 25 27 30

EN 10−19 10−24 10−29

||RN||∞ 10−19 10−24 10−29

Table 3. Compare of some methods of Example 3.

α x Oper. matrix method [2] Present method (N = 27)

0.2 0.1 2.9× 10−1 5.6× 10−7

0.3 4.5× 10−1 2.2× 10−5

0.5 7.4× 10−1 3.7× 10−3

0.7 3.7× 10−1 2.7× 10−2

0.9 2.0× 10−1 9.5× 10−2

0.6 0.1 6.7× 10−3 1.0× 10−14

0.3 2.0× 10−5 4.0× 10−14

0.5 5.2× 10−3 3.0× 10−14

0.7 4.4× 10−3 1.0× 10−14

0.9 4.6× 10−3 8.0× 10−14
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Table 4. Comparison of numerical results.

x Exact solution Adomian method Present met. (Ne = 16)

0.0 0.000000 0.000000 0.000000
0.2 0.125221 0.140640 0.125254
0.4 0.455435 0.533284 0.455468
0.6 0.950392 1.148840 0.950398
0.8 1.579557 1.963033 1.579689
1.0 2.315526 2.952567 2.315589

5. Conclusion

In this study, we present a Taylor matrix method for the numerical solutions of Bagley–Torvik
equation. This method transform Bagley–Torvik equation into a system of linear algebraic equation.
The approximate solutions can be obtained by solving the resulting system, which can be effectively
computed using symbolic computing codes on Maple 13. This method has been given to find the
analytical solutions if the system has exact solutions that are polynomial functions. If the exact solu-
tions of problem are not polynomial functions, then a good approximation can be gained by using
the proposed method. Application of the matrix method allows the creation of more effective and
faster algorithms than the ordinary ones. This method some considerable advantage of the method
is that the Generalized Taylor polynomial coefficients of the solution are found very easily, shorter
computation times are so low such as 1.4 sn for Example 3 (CPU Core2 Duo 2.13Ghz, RAM 2Gb)
and lower operation count results in reduction of cumulative truncation errors and improvement of
overall accuracy. Illustrative examples are included to demonstrate the validity and applicability of
the technique.
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