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A numerical method based on collocation points is developed to solve the nonlinear Klein-Gordon equations by using the Taylor
matrix method. The method is applied to some test examples and the numerical results are compared with the exact solutions.
The results reveal that the method is very effective, simple, and convenient. In addition, an error estimation of proposed method is
presented.

1. Introduction

Nonlinear phenomena, that occurs in many areas of sci-
entific such as solid state physics, plasma physics, fluid
dynamics, mathematical biology and chemical kinematics,
can be modeled by partial differential equations. The Klein-
Gordon equation is an important class of partial differential
equations and arises in relativistic quantum mechanics and
field theory, which is great importance for the high energy
physicist [1], and is used tomodelmany different phenomena,
including the propagation of dislocations in crystals and the
behavior of elementary particles. On the other hand, the
one-dimensional Klein-Gordon equation is given by partial
differential equation [2]
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In the present work we are dealing with the numerical
approximation of the following nonlinear Klein-Gordon
equation:

𝜕
2
𝑢

𝜕𝑡2
− 𝑘
2 𝜕
2
𝑢

𝜕𝑥2
+ 𝛽
1
𝑢 + ⋅ ⋅ ⋅ + 𝛽

𝑛
𝑢
𝑛

= 𝑔 (𝑥, 𝑡) 𝑥 ∈ [𝑎, 𝑏] , 𝑡 ∈ [0, 𝑇] ,

(2)

subject to initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑚 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (3)

where 𝛽
𝑖
(𝑖 = 1, . . . , 𝑛), 𝑘 are physical constants and 𝑔(𝑥, 𝑡) is

the time varying external input. Specially a non-zero right-
hand side in the KGE naturally arises in the context when
including for instance quantum gravitational effects into the
model.

KGE and the various other forms of the nonlinear KGE
are all well studied in various papers. The equation has
attracted much attention in studying solitons and soliton
perturbation theory [3–6]. Biswas et al. studied the adiabatic
dynamics of topological as well as the non-topological soli-
tons in presence of perturbation terms [7–10]. In order to
obtain the exact and numerical solutions of the nonlinear
KGEs, a number of methods have been proposed such as
the modified decomposition method [11], the symplectic
finite difference approximations method [12], the numerical
scheme based on the collocation method [2], the variational
iteration method [13, 14], the finite element method [15], the
cubic B-spline collocation method [16], the finite difference
method [17], the decomposition method [18], Exp-function
method [19, 20], the homotopy perturbationmethod [21], the
tanh method [22] and the Jacobi elliptic function method
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[23], the Soliton solution [24–28], the stationary solutions
[29] and the traveling wave solutions [30].

Since the beginning of 1994, Taylor matrix and collo-
cation methods have been to solve linear and nonlinear
ordinary differential equations, and difference equations used
by Sezer et al. [7, 31–36]. In this work, the mentioned
Taylor methods are developed and applied to Klein-Gordon
equation (2) with the initial conditions (3), and the solution
is expressed in the truncated double Taylor series
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where 𝑎
𝑟,𝑠
, for 𝑟, 𝑠 = 0, . . . , 𝑁 are the coefficients to be

determined. In this study we use the collocation points
defined by

𝑥
𝑘
= 𝑎 + 𝑘ℎ, 𝑡

𝑙
= 𝑙ℎ; ℎ =

𝑏 − 𝑎

𝑁
,

𝑘, 𝑙 = 0, 1, . . . , 𝑁.

(5)

2. Fundamental Relations

In the numerical solution of (2) with the presented Taylor
method, it is necessary to evaluate the Taylor coefficients of
the unknown function. For convenience, the relation (4) can
be written in the matrix form

𝑢 (𝑥, 𝑡) = X
1
(𝑥, 𝑡)A

1
,

𝑢
𝑖
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𝑖
, 𝑖 = 2, . . . , 𝑛,

(6)
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respectively, and defined as follows:

X1 (𝑥, 𝑡) = [𝑥
0
𝑡
0
𝑥
0
𝑡
1
. . . 𝑥
0
𝑡
𝑁

𝑥
1
𝑡
0
𝑥
1
𝑡
1
. . . 𝑥
1
𝑡
𝑁
. . .

𝑥
𝑁
𝑡
0
𝑥
𝑁
𝑡
1
. . . 𝑥
𝑁
𝑡
𝑁
] ,

X
𝑖
(𝑥, 𝑡) = [X(𝑖)

0,0
(𝑥, 𝑡) X(𝑖)

0,1
(𝑥, 𝑡) . . . X(𝑖)

0,𝑁
(𝑥, 𝑡)

X(𝑖)
1,0

(𝑥, 𝑡) X(𝑖)
1,1

(𝑥, 𝑡) . . . X(𝑖)
1,𝑁

(𝑥, 𝑡) . . .

X(𝑖)
𝑁,0

(𝑥, 𝑡) X(𝑖)
𝑁,1

(𝑥, 𝑡) . . . X(𝑖)
𝑁,𝑁

(𝑥, 𝑡)] ,

(7)

so that
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where

A(𝑖)
𝑝,𝑞

= 𝑎
𝑝,𝑞
A
𝑖−1

, 𝑖 = 2, . . . , 𝑛, 𝑝, 𝑞 = 0, 1, . . . , 𝑁. (9)

On the other hand, the relation between the matrix X
1
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(𝑚,𝑛) is

(X
1
(𝑥, 𝑡))

(𝑚,𝑛)
= X
1
(𝑥, 𝑡) (B)

𝑚

(B̃)
𝑛

, (10)
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,

(11)

where I is the (𝑁 + 1) × (𝑁 + 1) identity matrix. Using the
relations (6) and (10) we have

𝑢
(𝑚,𝑛)

(𝑥, 𝑡) =(X
1
(𝑥, 𝑡))

(𝑚,𝑛)A = X
1
(𝑥, 𝑡) (B)

𝑚

(B̃)
𝑛

A
1
. (12)

3. Method of Solution

The technique is to assume that the unknown function has
an expansion in the form (4), and to attempt to determine
values for the coefficients {𝑎

𝑟,𝑠
} such that the required differ-

ential equation and other conditions are satisfied. To obtain
numerical approximation to Klein-Gordon equation under
the given conditions, we can reduce (2) and (3) to the matrix
equations as follows:

X
1
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or briefly
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By substituting the collocation points defined by (5) into (14)
we have
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or in the compact form
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, 𝑖 = 0, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛.

(18)

We can use the following formulas to construct thematrix
representation of initial conditions (3):

𝑢 (𝑥, 𝑡) = X (𝑥)Q (𝑡)A
1
, 𝑢

𝑡
(𝑥, 𝑡) = X (𝑥)Q (𝑡) B̃A

1
,

(19)

where

X (𝑥) = [1 𝑥 𝑥
2

. . . 𝑥
𝑁
] , T (𝑡) = [1 𝑡 𝑡

2
. . . 𝑡
𝑁
] ,

Q (𝑡) =

[
[
[
[

[

T (𝑡) 0 ⋅ ⋅ ⋅ 0

0 T (𝑡) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ T (𝑡)

]
]
]
]

]

.

(20)

The matrix representations of nonhomogeneous terms of
(3) can be written in the forms

𝑓 (𝑥) = X (𝑥) F, F = [𝑓0 𝑓
1

. . . 𝑓
𝑁]
𝑇

,

𝑓
𝑛
=

𝑓
(𝑛)

(0)

𝑛!
; 𝑛 = 0, 1, . . . , 𝑁,

𝑚 (𝑥) = X (𝑥)M, M = [𝑚0 𝑚
1

. . . 𝑚
𝑁]
𝑇

,

𝑚
𝑛
=

𝑚
(𝑛)

(0)

𝑛!
; 𝑛 = 0, 1, . . . , 𝑁.

(21)

By substituting relations (21) into (3) and then simplifying the
result, we get the matrix forms of conditions as

Q (0)A
1
= F, Q (0) B̃A

1
= M. (22)

Table 1: 𝐿
∞
, 𝐿
2
, and RMS errors of Example 2 for 𝑁 = 4 and ℎ =

0.1.

𝑡 𝐿
∞
-error 𝐿

2
-error RMS-error

0 0 0 0
0.1 4.9593𝐸 − 8 9.6138𝐸 − 6 2.8986𝐸 − 6

0.2 5.6542𝐸 − 7 5.4883𝐸 − 6 1.6532𝐸 − 6

0.3 1.8493𝐸 − 6 1.1933𝐸 − 5 3.5979𝐸 − 6

0.4 3.2841𝐸 − 6 1.5829𝐸 − 5 4.7726𝐸 − 6

0.5 3.8373𝐸 − 6 1.4683𝐸 − 5 4.4271𝐸 − 6

0.6 4.6197𝐸 − 6 1.4714𝐸 − 5 4.4366𝐸 − 6

0.7 1.4141𝐸 − 5 3.9360𝐸 − 5 1.1867𝐸 − 5

0.8 5.6879𝐸 − 5 1.3952𝐸 − 4 4.2069𝐸 − 5

0.9 1.8571𝐸 − 4 4.0542𝐸 − 4 1.2224𝐸 − 4

1 2.2334𝐸 − 4 9.7993𝐸 − 4 2.9546𝐸 − 4

To obtain the solution under the conditions, we get

W
1
=

[
[
[
[
[
[
[
[
[
[
[

[

w̃𝑗
0

w̃𝑗
1

...
w̃𝑗
𝑁−2

Q (0)

Q (0) B̃

]
]
]
]
]
]
]
]
]
]
]

]

, W
𝑗
=

[
[
[
[
[
[
[
[
[
[
[

[

w̃𝑗
0

w̃𝑗
1

...
w̃𝑗
𝑁−2

0

0

]
]
]
]
]
]
]
]
]
]
]

]

, (𝑗 = 2, . . . , 𝑛) ,

G =

[
[
[
[
[
[
[
[

[

g
0

g
1

...
g
𝑁−2

F
M

]
]
]
]
]
]
]
]

]

.

(23)

By solving the following nonlinear system:

W
1
A
1
+W
2
A
2
+ ⋅ ⋅ ⋅ +W

𝑛
A
𝑛
= G, (24)

the unknown Taylor coefficients 𝑎
𝑟,𝑠

are determined and
substituted in (4); thus we get the Taylor polynomial solution

𝑢 (𝑥, 𝑡) =

𝑁

∑

𝑟=0

𝑁

∑

𝑠=0

𝑎
𝑟,𝑠
𝑥
𝑟
𝑡
𝑠
. (25)

4. Accuracy of Solution and Error Analysis

We can easily check the accuracy of the solution. Since the
truncated Taylor series (4) is an approximate solution of (2),
when the function 𝑢

𝑁
(𝑥, 𝑡) and its derivatives are substituted
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Table 2: Absolute errors of Example 3 for𝑁 = 4.

𝑡 𝑡 = 0.001 𝑡 = 0.01 𝑡 = 0.1

𝑥
𝑖

𝑐 = 0.01 𝑐 = 0.05 𝑐 = 0.01 𝑐 = 0.05 𝑐 = 0.01 𝑐 = 0.05

0.1 5.13𝐸 − 9 5.19𝐸 − 9 6.18𝐸 − 7 5.20𝐸 − 7 5.88𝐸 − 5 5.91𝐸 − 5

0.2 9.58𝐸 − 6 9.61𝐸 − 6 9.39𝐸 − 6 9.42𝐸 − 6 1.63𝐸 − 5 1.63𝐸 − 5

0.3 3.67𝐸 − 6 3.68𝐸 − 6 3.67𝐸 − 6 3.68𝐸 − 6 1.20𝐸 − 6 2.91𝐸 − 6

0.4 2.68𝐸 − 6 2.69𝐸 − 6 2.61𝐸 − 6 2.62𝐸 − 6 2.42𝐸 − 6 1.23𝐸 − 6

0.4 3.66𝐸 − 6 3.67𝐸 − 6 3.60𝐸 − 6 3.61𝐸 − 6 3.69𝐸 − 6 2.47𝐸 − 6

0.5 3.91𝐸 − 11 4.61𝐸 − 6 2.02𝐸 − 9 2.19𝐸 − 6 5.18𝐸 − 6 3.76𝐸 − 6

0.6 3.84𝐸 − 6 3.86𝐸 − 6 3.78𝐸 − 6 3.79𝐸 − 6 6.85𝐸 − 6 5.28𝐸 − 6

0.7 2.96𝐸 − 6 2.97𝐸 − 6 2.87𝐸 − 6 2.88𝐸 − 6 4.65𝐸 − 6 7.00𝐸 − 6

0.8 4.26𝐸 − 6 4.27𝐸 − 6 1.14𝐸 − 6 1.12𝐸 − 5 1.39𝐸 − 5 1.37𝐸 − 5

0.9 1.16𝐸 − 5 1.17𝐸 − 5 4.27𝐸 − 6 3.63𝐸 − 6 7.51𝐸 − 5 7.36𝐸 − 5

1 6.90𝐸 − 9 9.88𝐸 − 5 1.16𝐸 − 7 2.68𝐸 − 6 1.39𝐸 − 5 1.44𝐸 − 5

Table 3: Error analysis for Example 4.

𝑥
𝑖

𝐸
𝑁
(𝑥
𝑖
, 0.5)

0 0
0.1 4.14𝐸 − 4

0.2 3.39𝐸 − 4

0.3 3.54𝐸 − 4

0.4 1.19𝐸 − 4

0.5 7.83𝐸 − 4

0.6 6.13𝐸 − 10

0.7 1.41𝐸 − 4

0.8 7.68𝐸 − 4

0.9 2.71𝐸 − 4

1 8.41𝐸 − 4

in (2), the resulting equationmust be satisfied approximately;
that is, for 𝑥 = 𝑥

𝑝
, 𝑡 = 𝑡

𝑞
∈ [𝑎, 𝑏] × [0, 𝑇], 𝑝, 𝑞 = 0, 1, 2 . . .

𝐸
𝑁
(𝑥
𝑝
, 𝑡
𝑞
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑢 (𝑥
𝑝
, 𝑡
𝑞
)

𝜕𝑡2
− 𝑘
2
𝜕
2
𝑢 (𝑥
𝑝
, 𝑡
𝑞
)

𝜕𝑥2
+ 𝛽
1
𝑢 (𝑥
𝑝
, 𝑡
𝑞
)

+ ⋅ ⋅ ⋅ + 𝛽
𝑛
𝑢
𝑛
(𝑥
𝑝
, 𝑡
𝑞
) − 𝑔 (𝑥

𝑝
, 𝑡
𝑞
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≅ 0,

(26)

where

𝐸
𝑁
(𝑥
𝑝
, 𝑡
𝑞
) ≤ 10

−𝑘𝑝𝑞 , (𝑘
𝑝𝑞

is any positive integer) . (27)

If max 10
−𝑘𝑝𝑞 = 10

−𝑘 (𝑘 positive integer) is prescribed, then
the truncation limit𝑁 is increased until difference𝐸(𝑥

𝑝
, 𝑡
𝑞
) at

each of the points becomes smaller than the prescribed 10
−𝑘.

On the other handweuse different error norms formeasuring
errors. These error norms are defined as follows:

(1) 𝐿
2
− Error = (∑

𝑛

𝑖=0
(𝑒
𝑖
)
2
)
1/2,

(2) 𝐿
∞

− Error = Max(𝑒
𝑖
), 0 ≤ 𝑖 ≤ 𝑛,

(3) RMS − Error=√∑
𝑛

𝑖=0
𝑒
𝑖

2/(𝑛 + 1),

where 𝑒
𝑖
= 𝑢(𝑥

𝑖
, 𝜏)− 𝑢̂(𝑥

𝑖
, 𝜏)(𝑥
𝑖
= 𝑎+ 𝑖ℎ, ℎ = (𝑏−𝑎)/𝑛); also 𝑢

and 𝑢̂ are the exact and approximate solutions of the problem,
respectively, and 𝜏 is an arbitrary time 𝑡 in [0, 𝑇].

5. Illustrative Examples

In this section, several numerical examples are given to
illustrate the properties of the method and all of them were
performed on the computer using a programwritten inMaple
v9.

Example 1. Consider the nonlinear Klein-Gordon equation
[13]

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

+ 𝑢
2
= 6𝑥𝑡 (𝑥

2
− 𝑡
2
) + 𝑥
6
𝑡
6 (28)

with initial conditions

𝑢 (𝑥, 0) = 0, 𝑢
𝑡
(𝑥, 0) = 0. (29)

Following the procedures in Section 2 and by substituting the
obtained coefficients in equation, the solution becomes

𝑢 (𝑥, 𝑡) = 𝑥
3
𝑡
3
, (30)

which is the exact solution.

Example 2. We next consider the nonlinear linear Klein-
Gordon equation [2]

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

+ 𝑢
2
= −𝑥 cos (𝑡) + 𝑥

2cos2 (𝑡) , (31)

with initial conditions

𝑢 (𝑥, 0) = 𝑥, 𝑢
𝑡
(𝑥, 0) = 0. (32)

In Table 1, the 𝐿
2
, 𝐿
∞

errors and RMS of errors are obtained
for different values of 𝑡.The graph of analytical and numerical
functions for 𝑁 = 4 and the absolute error graph are given
in Figure 1. It is seen that the linear terms in right hand side
of (28) and (31) are forced terms. By adding these terms to
the homogen equations, we are trying to find the effect of the
force terms on homogen solution such a way that either they
are in solution forms or other types of solutions.
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Figure 1: Exact solution, numerical solution, and absolute error of Example 2 for𝑁 = 4.

Example 3. In this example, we consider the nonlinear Klein-
Gordon Equation (3) with cubic nonlinearity with constants
𝑘
2
= 2.5, 𝛽

1
= 1, 𝛽

3
= 1.5 and 𝛽

𝑖
= 0, 𝑖 ̸= 1, 3) in the interval

0 ≤ 𝑥 ≤ 1. The initial conditions are given by

𝑢 (𝑥, 0) = 𝐵 tan (𝐾𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 𝐵𝑐𝐾sec2 (𝐾𝑥) , 0 ≤ 𝑥 ≤ 1,

(33)

and the exact solution by (3) is

𝑢 (𝑥, 𝑡) = 𝐵 tan (𝐾 (𝑥 + 𝑐𝑡)) , 0 ≤ 𝑥 ≤ 1, (34)

where

𝐵 = √
𝛽
1

𝛽
3

, 𝐾 = √
−𝛽
1

2 (𝑘2 + 𝑐2)
, 𝑔 (𝑥, 𝑡) = 0. (35)

Thenumerical solution for Example 3 is recorded for different
time levels by utilizing the proposed method. At each given
time level, absolute error is shown in Table 2.

Example 4. We finally close our analysis by studying the
Klein-Gordon equation [14]

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

+
3

4
𝑢 −

3

2
𝑢
3
= 0, (36)

with initial conditions

𝑢 (𝑥, 0) = −sec ℎ (𝑥) , 𝑢
𝑡
(𝑥, 0) =

1

2
sec ℎ (𝑥) tan ℎ (𝑥) .

(37)

Here the exact solution of equation is (see [21])

𝑢 (𝑥, 𝑡) = −sec ℎ (𝑥 +
1

2
𝑡) . (38)

The solution of this nonlinear system is obtained for 𝑁 = 6.
For numerical results, see Table 3 and Figure 2.
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Figure 2: (a) Error function for Example 4. (b) Error function at 𝑡 = 0.5 for Example 4.

6. Conclusion

In this paper, a very simple but effective Taylormatrixmethod
was proposed for the numerical solution nonlinear Klein-
Gordon equation. One of the advantages of this method that
the solution is expressed as a truncated Taylor series, then
𝑢(𝑥, 𝑡) can be easily evaluated for arbitrary values of 𝑥 and 𝑡

by using the computer program without any computational
effort. From the given illustrative examples, it can be seen
that the Taylor series approach can obtain very accurate and
satisfactory results. An interesting feature of this method
is that the analytical solution is obtained as demonstrated
in Example 1 when the exact solution is polynomial. This
method can be improved with new strategies to solve the
other nonlinear equations.
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