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ABSTRACT KEYWORDS
The aim of the present work is to broaden our knowledge on the variability Black Sea; Ceramium rubrum;
of metals and metalloid concentration levels in surface sediments, macro- mining; Mytilus

algae and mollusc. Accordingly, As, Co, Cr, Cu, Mn, Mo, Ni, Pb, and Zn levels QUI’OP’OVf”Ci‘?/iS? Ulva
in surface sediments, marine macroalgae species (Ulva intestinalis and intestinalis; Strmene Bay
Ceramium rubrum) and mollusk (mussel Mytilus galloprovincialis) collected

from nine stations along the Stirmene Bay, Black Sea, Turkey, have been

investigated using Inductively Coupled Plasma Mass Spectrometry (ICP-

MS). Hence, higher concentration levels of As, Cu, Mn, Pb and Zn have

been recorded in the sediments and macroalgae collected from the

harbor area, largely exceeding those recorded in previous studies carried

out in the Turkish Black Sea. Consequently, sampled sediments from such

area have revealed the highest Contamination Factor (Cf) values as well as

the highest Contamination Degree (CD) levels, signaling higher ecological

risks. Furthermore, U. intestinalis has shown higher accumulation capacity

than C. rubrum and M. galloprovincialis. The Target Hazard Quotient (THQ)

and the Hazard Index (HI) have been carried out in order to evaluate the

non-carcinogenic health risks posed by metals/metalloid via M. gallopro-

vincialis consumption, revealing values below 1 for all sampling sites,

indicating thus no adverse effects on human health.

1. Introduction

The causes of metal pollution in the marine environment are natural such as weathering, erosion
and volcanic eruptions, and anthropogenic activities as the leading causes contaminating the
environment through domestic sewage and industrial effluents, agriculture, aquaculture, mining
processes discharging metal-containing waste, landfill leachates, as well as secondary precipita-
tion of polluted airborne matter (Nriagu 1989; Vodopivez et al. 2015). Several factors such as
mineralogical composition, reduction & oxidation state, sediment texture, adsorption & deso-
rption processes have been known to strongly regulate the distribution and accumulation of
metals in marine sediments (Buccolieri et al. 2006). The accumulation of heavy metals in marine
sediments can pose threats to human health if transported through the food web (Hapke 1996;
Manahan 2000). The intake of heavy metals through consumption of aquatic products can cause
serious health disorders if ingested beyond the permitted level (Babel and Kurniawan 2004).
Generally, heavy metals accumulate in vital body organs such as kidney, liver, heart, and brain;
altered their normal biological functioning (Rehman et al. 2018; Singh et al. 2011).
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According to Phillips (1990), to be considered as appropriate for used as
a bioindicator, it is highly recommended that a species should display some properties
such as (i) Sessile or sedentary; (ii) Tolerant to high levels of contaminants and wide
ranges of salinity, yielding laboratory studies of the kinetics of contaminants; (iii)
Abundant in the study area, permitting an easy collect and should provide sufficient
amounts of tissue for analysis; and (iiii) A simple correlation between the concentra-
tion of the contaminant in the tissues of the organism and the average concentration
bioavailable in the environment should be revealed. Accordingly, marine macroalgae
and bivalve mollusks fulfill the general prerequisites for a bioindicator. Hence, they
have been widely used for the biomonitoring of metal contamination in a given milieu
(Phillips 1977; Rainbow 2002; Shulkin, Presley, and Kavun 2003; Villares, Puente, and
Carballeira 2001).

The Black Sea receives yearly about 354 km’ of river water that also transport metals
toward the sea (Galatchi and Tudor 2006; Topcuoglu, Kirbasoglu, and Gungor 2002). The
metals are also delivered to the Black Sea through direct discharge of municipal, industrial,
agricultural, mining wastes, oil, and pollutants of atmospheric origin (Alkan et al. 2015;
Topcuoglu, Kirbasoglu, and Gungor 2002). According to Alkan et al. (2015), the sedi-
ments collected from the south-eastern region of the Turkish Black Sea have exhibited
metal concentrations higher than those of Interim Sediment quality guidelines (ISQG).
However, little information is available about the level of different metals in the sediments
of the Siirmene bay (Alkan et al. 2015). Moreover, the determination of accumulation
process of metals in organisms (i.e. macroalgae) of this area has been more scarcely
evaluated compared to other parts of the Black Sea.

In this study, Ulva intestinalis (syn. Enteromorpha intestinalis), Ceramium rubrum (macro-
algae), and mussel (Mytilus galloprovincialis) were chosen as bioindicators. Accordingly, the
aim of this study is: (1) to analyze the level of As, Co, Cr, Cu, Mn, Mo, Ni, Pb, and Zn in
sediment and aforementioned biota collected from nine different sites along the Stirmene Bay
of the Black Sea, (2) to calculate the biota-sediment accumulation factor (BSAF) and (3) to
identify the level of above-mentioned metals/metalloid in mussel M. galloprovincialis to
investigate public health risks.

2. Material and Methods
2.1. Sample collection

Surface sediments (0-5 cm), with biota (macroalgae, U. intestinalis and C. rubrums;
mollusks M. galloprovincialis), have been collected during November 2016 from nine
stations along the Siirmene Bay, close to Trabzon-Rize highway from Turkey (Figure 1,
Table 1), using the Van-Veen grab samplers. It has been revealed that Van-Veen grab
samplers, the most commonly used grab samplers, have been used to collect information
related to the horizontal surface distribution of sediments. The sampled mussels
M. galloprovincialis and macroalgae were washed thoroughly with pure water to remove
sand and other fouling substances and placed in acid-rinsed polypropylene bags using
plastic spatula. All samples were kept in a cooler until they reached the laboratory. After
then, they were stored at —20 C until analysis.
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Figure 1. Map of the study area.

2.2. Laboratory work

2.2.1. Sediment Characterization

The sediment samples were wet sieved (2 mm-63 pm) with a vibratory shaker (Retch, Germany)
for grain-size analysis and classified according to Udden-Wentworth grain-size classification
scheme (Wentworth 1922). The sediment samples were passed through a sieve of 63 um mesh
size for metal/metalloid analysis and 500 pum for total organic carbon (TOC) analysis. After then
they dried at 45° C until a constant weight. The modified Walkley-Black titration method was
used for TOC determination of sediment (Gaudette et al. 1974). The pH and oxidation reduction
potential (ORP) measurements were realized in samples sieved through 2 mm pore size and
dried at 105° C with a portable multi-meter (Hach Lange HQ40D) followed by water dilution
(1:5) (Jackson 1958).

2.2.2. Mussels and macroalgae

Mpytilus galloprovincialis mussels, 30 from each site, of weight ranging 1.2 to 8.1 g, total
shell length 25 to 41 mm and height 8 to 13 mm, were collected for the metal analysis. The
length range (25-41 mm) is an indication that the mussels M. galloprovincialis are smaller
than the adult size group (Rosioru 2014). The edible tissues were carefully separated from
the hard part to prevent contamination. Pooled samples were used for metal analysis in
mussel M. galloprovincialis samples. Algal samples were collected by hand at low tide from
each site (Figure 1). The tissues and the algal samples were individually dried in a freeze
dryer to a constant weight.

2.3. Metal/metalloid analysis

Metal/metalloid analysis of sediment, macroalgae, and mussel M. galloprovincialis (soft
tissue) were measured with ICP-MS at ACME (Vancouver, BC, Canada) laboratory.
AQ251 digestion method was used (with aqua regia, 1:1:1 HNO;:HCI:H,O) for sediment
samples. Mussel M. galloprovincialis and macroalgae samples were digested in HNOj3 then
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aqua regia (VG104). All digested samples were analyzed by ICP-MS for ultralow detection
limits. STD ASH-1 and STD DSI11 reference materials were used for accuracy test of
mussel M. galloprovincialis and macroalgae samples and STD OXC129 for the sediment.
The accuracy of the sediment, mussel M. galloprovincialis and algae metal/metalloid
analysis ranged from 92 to 107%, 92 to 102% and 92 to 102%, respectively.

2.4. Sediment quality assessment

The levels of metal contamination in the surface sediments were assessed by calculating
contamination factor (Cy), contamination degree (CD), potential ecological risk (PER),
and pollution load index (PLI) (Hakanson 1980; Pekey et al. 2004; Savvides et al. 1995;
Tomlinson et al. 1980)

2.4.1. Contamination factor (Cy)

The contamination factor (Cy) has been carried out in order to evaluate sediment con-
tamination by each analyzed metal concentration. It has been calculated based on the
following equation:

Cf = Cm/CB (1)

Whereby, C,, is the level of metal in the sediment, Cy is background levels (Table 2). The
computed Cf values have been classified into four categories:

Low contamination: Cf < 1;

Moderate contamination: 1 < Cf < 3;
Considerable contamination: 3 < Cf < 6;
Very high contamination: Cf = 6

2.4.2. Contamination Degree (CD)
The Contamination Degree (CD) has been estimated based on the summation of the average
contamination factors for each analyzed metal. Accordingly, it has been calculated as follows:

¢
BAFS = — 2
= @

S

The computed CD values have been classified into four categories:

e Low degree of contamination: CD < 8;
e Moderate degree of contamination: 8 < CD < 16;
o Considerable degree of contamination: 16 < CD < 32

Table 2. Background levels of analyzed metals referring to various studies carried out in southeastern
Black Sea areas.

As Co C&r Cu Mn Ni Pb Zn

Concentrations (mg/Kg) (Ergin et al. 1991; Yiicesoy and Ergin 1992; Erglil 5.2 7.1 225 222 322 118 202 6438
et al. 2008)
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e Very high degree of contamination: CD = 32

Contamination factor, considered as a simple and effective tool, has been widely used in
monitoring each analyzed metal contamination. Moreover, contamination degree, based
on summation of average Cf, has been used to investigate contamination of all analyzed
metals at the same time for a given sampling site.

2.4.3. Potential Ecological Risk (PER)
The potential ecological risk index (PER) was calculated by:

Ep = Tr' x G 3)
. Ci
Ci= (= 4
' (c;> @
PER= Y 'Ei (5)

where E' s the PER for a chemical element i, Tr' is the biological toxic factor of a chemical
element i, with As = 10, Co = Cr = Ni = Pb = 5, Cr = 2 and Zn = 1 (Bahloul et al. 2018;
Javed, Ahmad, and Mashiatullah 2018;), Ci, Cis and Ci] are the contamination factor, the
level of element i in the sediment and the background reference value.

2.4.4. Pollution Load Index (PLI)
The pollution Load Index (PLI) was calculated by the following equation (Tomlinson et al.
1980;):

1
PLI = (G X Cpy X Cps X ... x Cp) /1 (6)

where (n) is the number of metals taken into consideration and CF is the contamination
factor.
The computed PLI values were classified into six categories (Tomlinson et al. 1980):
Six classes of PLI were proposed by Tomlinson et al. (1980):

Unpolluted: 0 < PLI < 1;

Unpolluted to moderately polluted: 1 < PLI < 2;
Moderately polluted: 2 < PLI < 3;

Moderately to highly polluted: 3 < PLI < 4;
Highly polluted: 4 < PLI < 5;

Very highly polluted: PLI > 5

2.5. Health risk assessment

The dry weight of metal/metalloid concentration (mg kg™') was converted to wet weight
using the method proposed by Cresson et al. (2017) prior to calculate the target hazard
quotient (THQ) and hazard index (HI). The conversion factor was 9.4.
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THQ was calculated as described by Dalipi et al. (2015):

THQ — Efr x EDtot x Cw x FIR « 0.001 @
~ RfDo x BWa x ATn ’

where Efr is the exposure frequency (365 days/year), EDtot is the exposure duration
(70 years), C is the metal/metalloid concentration (mg kg ' wet weight) in a sample,
FIR is the average daily consumption of mussel M. galloprovincialis, which was kept as
1.01 g/per person/d (daily mollusk consumption in Turkey), referring to Bat et al. (2018).
On the other side, RfDo is the oral reference doses (mg/kg/day) of metals/metalloid (As,
3.0 x 107% Co, 3.0 x 107% Cr, 3.0 x 107% Cu, 5.0 x 107 Mn, 1.4 x 10™'; Mo, 5.0 x 107;
Ni, 2.0 x 107% Pb, 2.0 x 107>, and Zn 3.0 x 10™") were taken from USEPA (2018), BWa is
the average body weight (kg) which was taken as 72.5 kg for a Turkish person (Gedik
2018), and ATn is the average exposure for non-carcinogens in a year (365 days/
year x 70 years). THQ value greater than 1 evince a potential health risk, and indicate
that the local inhabitants are in a level of concern interval (USEPA 2018).
Hazard index was calculated as described by Jia et al. (2016):

HI = THQ4+THQc, +THQe+THQe, + THQuMa +THQuMo +THQNi +THQp, +THQ7z, (8)

2.6. Bioaccumulation of metals/metalloid in macroalgae and mussel

Biota-sediment accumulation factors (BSAF) were used to evaluate the efficiency of metal/
metalloid bioaccumulation in macroalgae and mussel M. galloprovincialis Burkhard
(2009). BASFS was calculated by following formula:

CD=Y"" CF, 9)

C, is the metal/metalloid concentration in biota (mg kg™') and C, is metal/metalloid
concentration in sediment (mg kg™).

2.7. Statistical analyses

Each reported result is the average of three analyses and provided as mean + SD. The
transformation of data (log + 0.1) was done prior to data analyses. The Pearson correla-
tion was used to evaluate a direct (a positive correlation) or an inverse relationship (a
negative correlation) between environmental parameters (e.g. depth, organic matter, ORP,
TOC) and metal/metalloid concentrations in sediments and biota. Accumulation affinity
behaviors (similarities and dissimilarities) of analyzed metals in each sample category
(sediments, mussels, and macroalgae) have been investigated through obtained dendro-
grams from cluster analysis applied to all data.

Also, the calculated BSAF values of studied metals/metalloids for Ceramium rubrum,
Ulva intestinalis (macroalgae), and mussel M. galloprovincialis were compared using One-
way ANOSIM and SIMPER tests to determine their similarities. The R v3.4.4 was used for
Pearson correlation and cluster analyses while PAST 3.14 was used to run ANOSIM and
SIMPER tests.
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3. Results and Discussion
3.1. Physical and chemical characterization of sediments and grain size

The mean values (£SD) of dry matter content (%), water content (%), pH, organic matter,
carbonate, TOC, and ORP (mV) in sediments are presented in Table 1. The highest values
of pH (>8.0) were recorded at Camb-1 (harbor area), Of-2, and Of-3 (Eastern area) while
the lowest pH was found at Camb-3 and Of-1. Generally, metals are more mobile when
present in acidic environment resulting in increased metal concentrations in soil/sedi-
ments and water column (Akan et al. 2013). The lowest organic matter (<2.0%) was
recorded at Stirm-2 and Of-3 while the mean maximum values were recorded at Camb-3
(harbor area) and Of-1. The organic matter tends to absorb metals and plays an important
role in the accumulation of metals in the sediment (Saher and Siddiqui 2016; Yona, Fuad,
and Hidayati 2018). The greater values of ORP were recorded at Camb-3 and Of-1 (Table
1). Generally, the solubility of metals in sediments increase with rise an ORP value leading
to metal release from the sediment (Kelderman and Osman 2007; Popenda 2014).

The metal/metalloid concentrations can vary according to grain size and their highest
concentrations (both natural and contaminant metals/metalloid) are generally found in the
very fine-grained muddy sediments (De Groot, Zschuppel, and Salomons 1982). In the
present study, silt and clay (mud, <63 um), very fine sand (63-125 pm), and fine sand
(125-250 um) were the dominant fractions in the sediments sampled from the Stirmene Bay
of the Black Sea (Table 3). Mud was the dominant fraction (>43%) in sediments collected
from the Arakli (Arak-1), Sirmene (Siirm-1) and Camburunu (Camb-2). The western part of
the study area had relatively a higher fraction of very fine sand. Consequently, due to the
favorable grain size, pH, level of ORP and organic matter of the harbor and eastern part (i.e.
Camb-3 and Of-1) of the study area for metal/metalloid accumulation, these areas relatively
had metals/metalloid with a higher concentration than other sites (Table 3).

3.2. Metal/metalloid concentration in sediment and biota

The mean (#SD) metal/metalloid concentration of sediments, marine macroalgae
(U. intestinalis and C. rubrum), and mussel M. galloprovincialis are presented in Table 4.
Manganese, Zn, and Cu were the first three metals present thoroughly with the highest
concentration in sediments as well as in biota. In the present study, the mean maximum
metal/metalloid concentration was decreased in the following order:

(i) Sediment: Zn > Cu > As > Mn > Pb > Cr > Co > Ni > Mo with 4259.5, 3107.3,
557.7, 446.9, 208.2, 40.2, 32.8, 23.4, and 4.9 mg kg-1 concentration, respectively.
(ii) Ceramium rubrum: Mn > Zn > Cu > As > Cr > Ni > Pb > Co > Mo with 223.1, 52.6,
43.6,25.4,14.4,7.3,3.5,1.5,and 0.4 mgkg " (dry weight) concentration, respectively.
(iii) Ulva intestinalis: Mn > Cu > Zn > Cr > As > Pb > Ni > Co > Mo with 856.9, 493.0, 351.5,
394, 36.2, 18.9, 15.8, 9.1, and 1.5 mg kg_1 (dry weight) concentration, respectively.
(iv) Mussel (M. galloprovincialis): Zn > Cu > Mn > Cr > As > Ni > Pb > Co > Mo with
478.4, 267.0, 152.0, 16.1, 7.5, 7.1, 5.9, 2.7, and 0.7 mg kg™' (dry weight) concen-
tration, respectively.
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Table 3. Grain size distribution (%) of the surface sediments collected from the Siirmene Bay of the
Black Sea in November 2016.

SEDIMENTS GRAIN SIZE

Very Coarse Very fine
Granule sand Coarse sand Medium sand Fine sand sand Silt + Clay
500 pm- 250 pm- 125 pm- 63 um-

STATION <2 mm 1-2 mm 1T mm 500 um 250 ym 125 pm <63 pm
Western part
Arak-1 0.02 0.02 0.03 0.11 1.16 10.66 88.00
Stirm-1 0.12 0.01 0.14 0.16 7.93 48.64 43.01
Siirm-2 0.41 0.04 0.04 0.20 32.81 46.60 19.91
Harbor area
GCamb-1 0.68 0.08 0.07 0.50 42.40 47.51 8.76
Gamb-2 0.17 0.09 0.05 0.22 5.10 8.64 85.73
Gamb-3 0.15 0.01 0.05 2.25 3349 40.69 23.36
Eastern part
Of-1 12.68 0.27 0.18 1.82 39.83 40.53 4.69
0Of-2 10.40 0.02 0.04 0.57 21.62 52.87 14.48
0f-3 0.63 0.01 0.10 3 54.14 31.48 10.53

Arak. Arakli; Strm. Stirmene; Camb. Camburnu

3.3. Sediment

In this study, the overall highest concentrations of the studied metals/metalloid (except
Mn) were recorded in the sediment than biota. Moreover, the highest concentration of
metals/metalloid in sediment was recorded in samples acquired from the harbor area
except Mn and Ni. Manganese and Ni were present in higher concentrations in the eastern
part of the studied area (Of-2 and Of-3). Such areas were demonstrated to be under the
impact of streams that flow in these areas. According to Alkan et al. (2015) the concen-
trations of metals considerably differ across the evaluated regions indicating the influence
of several environmental factors such as local geological and hydrological conditions as
well as industrial activities. The highest concentration of metals/metalloids in the harbor
area compared to western and eastern parts of the studied area suggests a higher delivery
of metals/metalloids to this area.

Comparison with literature values, the present study revealed that the harbor area
(Camburnu) had much higher concentrations of As, Cu, Mn, Pb, and Zn than other parts
of the Turkish Black Sea (Cagatay, Saltoglu, and Gedik 1987; Gedik and Boran 2013;
Topcuoglu, Kirbasoglu, and Gungor 2002; Topcuoglu, Kirbasoglu, and Yilmaz 2004).
These high concentrations likely correspond to the impact of copper mines in the region
and an increase in anthropogenic pollutant inputs (Alkan et al. 2015; Al-Mur, Quicksall,
and Al-Ansari 2017). Whereas, lower concentrations of Co, Cr, and Ni were observed in
the present study than other parts of Turkish Black Sea (Ergil et al. 2008; Topcuoglu,
Kirbasoglu, and Gungor 2002; Topcuoglu, Kirbasoglu, and Yilmaz 2004).

3.3.1. Contamination factor
Calculated contamination factors as well as contamination degrees of all analyzed metals
in sediments collected from selected sites have been summarized in Table 5, showing
significant fluctuations reflecting different contamination levels.

In general, CF values were ranged between 0.63 and 139.97 indicating thus a low to
very high contamination factor. In fact, the highest CF level was obtained for Cu and the
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lowest one was obtained for Mn. Both of them have been obtained in the case study of
sediments sampled from Camb 3. All analyzed metals have shown distinct CF values,
indicating diverse levels of contamination of the sampled sediments. Based on average CF
values, the sampled sediments may be considered to be contaminated by the selected
metals in the following order: Cu > As > Zn > Pb > Co > Ni > Cr > Mn. For all sampled
sediments, CF levels in the case of Mn, Ni, and Cr have never exceeded 3, indicating thus
low to moderate contamination. Contrary, the sediments sampled from Camb 2, Camb 3
have exhibited very high CF levels in the case of Pb, on the one hand, and in the case of
As, Cu, and Zn, sediments sampled from Camb 2, Camb 3, Of 1, and Of 2 have shown
very high CF levels, on the other hand, suggesting high pollution level due to anthro-
pogenic activities (sewage effluents, fishing activities, damaged ships and boats, human
refuse, shipping, transportation, fuel smuggling, and the industrial facilities).

The spatial distribution of contamination level (Table 6) for the selected metals has
shown that:

e Sediments sampled from Arak 1, Sirm 1, Sirm 2, and Camb 1 showed low to
moderate contamination level for all analyzed metals;

e Sediments sampled from Camb 2, Camb 3, Of 1, Of 2, and Of 3 showed moderate
through considerable to very high contamination level for all analyzed metals;

3.3.2. Contamination degree
Computed contamination degree for all analyzed elements in the case study of different
sampled sediments (Table 5) has revealed that:

¢ In the case study of Arak 1, Stirm 1, Stirm 2, and Camb 1 sampled sediments have
revealed a moderate degree of contamination;

e Sampled sediments form Of 2 and Of 3 have shown a considerable degree of
contamination;

e For Camb 2, Camb 3, and Of 1, collected sediments have exhibited a very high degree
of contamination indicating alarming anthropogenic contamination.

Table 6. Spatial distribution of contamination level for all selected metals.

Analyzed Metal/ Considerable (3
Contamination Low (CF < 1) Moderate (1 < CF < 3) <CF<6) Very high (CF = 6)
As X Arak1/Siirm 1/Siirm 2/Camb 1 0of3 Camb 2/Camb 3
Co X Arak 1/Siirm 1/Siirm 2/Camb 1/ Camb 3 X
Camb 2/0f 2/0f 3
Cr Arak1/Siirm 1/ Camb 2/Camb 3/0f 1/0f 2/0f 3  x X
Siirm2/Camb 1
Cu X Arak 1/Siirm 1/Siirm 2/Camb 1 Of 3 Camb 3/0f 1/0f
2
Mn Arak 1/Camb 3 Siirm 1/Siirm 2/Camb 1/Camb 2/ x X
Oof 1/0f 2/0f 3
Ni Camb 1/Camb 3 Arak 1/Siirm 1/Siirm 2/Camb 2/ x X
of 1/0f 2/0f 3
Pb Siirm 2/Camb 1 Arak 1/Siirm 1/0f 1/0f 2/0f 3 X Camb 2/Camb 3
Zn X Arak 1/Siirm 1/Siirm 2/Camb 1 Of 3 Camb 2/Camb 3/

of 1/0f 2
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3.3.3. Potential ecological risk
The results of evaluation on potential ecological risk factor (Er) and the potential
ecological risk index (PER) are summarized in Table 7.

The potential ecological risk coeflicient (Er) of As, Co, Cr, Cu, Mn, Ni, Pb, and Zn
ranged between 0.63 and 1072, indicating low to very high ecological risk, respectively. In
fact, the individually potential ecological risk factors for Mn, Ni and Cr were lower than
40, belonging to low ecological risk in all sampled sediments. In the case study of Pb and
Zn, calculated potential ecological risk showed moderate risk in surface sediments col-
lected from “Camb 3” and low ecological risk in all remaining sites. However, the potential
ecological risk factors of As and Cu were higher than 600 in surface sediments sampled
from “Camb 3” signaling the highest ecological risk. These metals were showed also, high,
considerable, and moderate ecological risks in the case study of sampled sediments from
“Camb 2,” “Of 1,” and “Of 27, respectively. For the other remaining sites, As and Cu
showed low ecological risk.

The total ecological risk index (RI) of seven heavy metals in the study sites ranged
between 10.07 (in the case of Mn) and 1534.38 (in the case of As) thus falling within the
class of low (Mn, Cr, Ni, Pb, and Zn) to very high ecological risk (Cu and As). The order
of total potential ecological risk coefficient (RI) of heavy metals in sampled surface
sediments was: As > Cu > Pb > Zn > Ni > Cr > Mn.

3.3.4. Pollution load index

The computed values of Pollution Load Index (PLI) (Table 5) for all analyzed metals

revealed that surface sediments in Siirmene bay, Black Sea, Turkey were highly to very

highly polluted suggesting thus the impact of anthropogenic activities in the study area.
The order of PLI of heavy metals in sampled surface sediments was:

Camb 3 > Camb 2 > Of 1 > Of 2 > Of 3 > Camb 1 > Stirm 2 > Arak 1 > Siirm 2.

3.4. Marine macroalgae

3.4.1. Metal concentrations

Ulva intestinalis had higher concentrations of metals/metalloid than C. rubrum which is in
line with the findings of Villares, Puente, and Carballeira (2001) and Akcali and Kucuksezgin
(2011) about the high susceptible of U. intestinalis to contamination. Similar to sediment, the

Table 7. Calculated values of Potential Ecological Risk factor (ER) and Potential Ecological Risk Index
(PER).

Potential ecological risk factor (ER)

Stations Indices As Co Cr Cu Mn Ni Pb Zn

Arak 1 ER 12.72 50.65 1.79 6.64 0.97 5.72 5.67 1.64
Siirm 1 ER 12.79 60.38 1.45 7.03 1.25 5.15 5.21 1.69
Siirm 2 ER 12.64 44.43 1.78 6.62 1.07 5.40 427 1.91
Camb 1 ER 17.58 50.58 1.59 8.94 1.19 458 442 2.14
Camb 2 ER 180.38 61.28 3.58 184.88 1.04 5.30 32.83 21.75
Camb 3 ER 1072.51 164.02 2.37 699.83 0.63 497 51.53 65.73
of 1 ER 133.07 81.20 3.14 87.62 1.19 6.36 11.97 12.82
of 2 ER 61.39 67.95 3.34 48.42 134 9.93 6.64 7.12
of 3 ER 31.29 68.12 3.06 25.43 1.39 8.14 6.54 4.10

PER JER 1534.38 648.62 22.09 1075.41 10.07 55.55 129.09 118.90
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highest concentrations of metals/metalloids were found in U. intestinalis sampled from the
harbor area. The present study reported a higher concentration of Ni, Pb and Zn in
U. intestinalis than Culha et al. (2013) for Ordu, Samsun, and Trabzon. Excluding the harbor
area, a higher concentration of Zn from EI - Mex Bay (Egypt) and Romanian Black Sea coast
was recorded for U. intestinalis (Mohamed and Khaled 2005; Trifan et al. 2015). Also, a much
higher concentration of As and Cr in U. intestinalis was reported from Delmarva Peninsula by
Chaudhuri et al. (2007).

For C. rubrum, the highest mean concentration of Mn, Zn, Cu, As, Ni, and Co were
recorded from the eastern zone (Of-9 and Of-7) while Cr and Mo in the harbor area
(Camb-1). The highest mean concentration of Pb in C. rubrum was found in the samples
collected from the western zone of the study area (Siirm-2). The concentrations of Co, Cr,
Cu, Mn, Nj, Pb, and Zn in C. rubrum from Arakli, Sirmene, Camburnu and Of (present
study) were relatively lower than Sinop (Topcuoglu et al. 2003). Also, Tuzen et al. (2009)
and Culha et al. (2013) reported a higher concentration of Co and Cr in C. rubrum from
Turkish Black Sea coast than the present study. However, C. rubrum collected from
Aegean Sea (Sawidis et al. 2001) and Romanian Black Sea (Cadar et al. 2018; Lupsor
et al. 2009) had lower concentrations of Cu, Mn, Pb, and Zn than the present study.

3.5. Mussel

3.5.1. Metal concentrations

In contrast to macroalgae, mussel M. galloprovincialis collected from the harbor area had
lower concentrations of studied elements except Zn, Cu, and As. Accordingly, the highest
concentrations of Zn, Cu, and As were recorded in M. galloprovincialis sampled from the
harbor area (Camb-3). Manganese, Cr, Ni, Pb, and Co in M. galloprovincialis with highest
concentration levels were found in sampled collected in the eastern part of the study area (Of-
8 and Of-9). The Mo with its highest mean concentration was recorded in the western zone
from Stirmene (Stirm-2). It is noteworthy that apart from metal concentration in sediments,
their bioavailability and uptake were a complex function of many factors including water pH,
redox potential, temperature, hardness, nutrients concentration, total organic content (both
particulate and dissolved fractions). Moreover, both the aqueous chemistry and the physiol-
ogy of the living organisms could be important in affecting metal bioavailability. Furthermore,
such difference in registered concentration levels of analyzed elements in mussels
M. galloprovincialis and macroalgae may indicate that the specimens in our study were still
at an intensive development stage and had high metabolic demand on essential elements that
resulted in a high capacity to accumulate Mn, Zn, and Cu in their tissues (Rzymski et al. 2014).
Consequently, bioaccumulation of heavy metals in aquatic organisms such as mussels
M. galloprovincialis depends not only on environmental concentrations but also on
a variety of biological and environmental factors (Mubiana and Blust 2007).

In this study, the presence of Zn, Cu, and Mn as the first three metals with a higher
concentration is in line with the findings of Gedik (2018) for Artvin, Giresun, Rize, and
Trabzon. Except Ni, the concentration of As, Co, Cr, Cu, Mn, and Zn in mussel
M. galloprovincialis were relatively higher than the Culha et al. (2017), Belivermis, Kilig,
and Cotuk (2016) and Topcuoglu, Kirbasoglu, and Gungor (2002) values reported from
different regions of the Turkish Black Sea. In the present study, the concentration of Ni
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was found relatively higher (except the harbor area) than Gedik (2018)’s values (converted
to dry weight) for Artvin, Giresun, Rize, and Trabzon.

3.5.2. Health risks assessments

THQ and HI methods were used to assess the non-carcinogenic health risks posed by
metals/metalloid via mussel M. galloprovincialis consumption. These methods are con-
venient for the evaluation of the non-carcinogenic health risks from the ingestion of
chemical elements via seafood consumption (Zhelyazkov et al. 2018). The estimated values
of THQ and HI for studied metals/metalloid are provided in Table 8. The THQ and HI
values recorded for all the stations were below 1 indicating no adverse effects on human
health for continuous consumption of mussel M. galloprovincialis for 70 years. This result
is in line with the findings of Belivermis, Kili¢, and Cotuk (2016) and Gedik (2018) for
mussel M. galloprovincialis caught in Turkish Black Sea. Belivermis, Kilig, and Cotuk
(2016) assessed the non-carcinogenic health risks of chemical elements (Ag, Al, As, Cd,
Co, Cr, Cu, Fe, K, Mn, Ni, Pb, Sn, V, and Zn) by estimated daily intakes (EDI), while
Gedik (2018) used bioaccessibility of Cd, Cu, Zn, Mn, Cr, Pb, and Ni. The results of the
present study were also in line with those of Zhelyazkov et al. (2018) with respect to low
THQ for Pb (0.0014), Cd (0.0032), and Hg (0.0006) in mussel M. galloprovincialis caught
in the Varna Bay, Bulgarian Black Sea.

3.6. Pearson correlation

The correlation sampling depth and metals/metalloid concentration in sediments and
marine macroalgae was mostly negative, while it is positively correlated to metals/metal-
loid concentration (except Cu) in mussel M. galloprovincialis but their correlations were
statistically not significant (Table 9). The metals/metalloid concentration (As, Co, Cr, Cu,
Mo, Pb, and Zn) in sediments increased with increasing its organic matter content and
correlation between As, Co, Cu, Pb, and Zn and organic matter were significantly positive.
A similar trend of correlations was observed between metals/metalloid concentration and
ORP in sediments (Table 9). The strong correlation between the organic matter and
metals/metalloid (particularly in sediment) indicated that they share common sources of

Table 8. Target hazard quotient (THQ) and corresponding Hazard index (HI) for analyzed metals and
metalloid from consumption of mussel collected during November 2016 from the Siirmene Bay of the
Black Sea.

Target hazard quotient (THQ)

Stations As Co Cr Cu Mn Mo Ni Pb Zn Hazard index (HI)
Western part

Arak-1 0.035 0.008 0.002 0.003 0.000 0.000 0.000 0.001 0.001 0.052
Stirm-1 0.032 0.007 0.001 0.003 0.001 0.000 0.000 0.002 0.001 0.048
Stirm -2 0.034 0.011 0.002 0003 0.001 0.000 0000 0.002 0.002 0.054
Harbor area

Gamb-1 0.025 0.003 0.000 0.007 0.000 0.000 0.000 0.002 0.001 0.038
Gamb-2 0.025 0.005 0.002 0.004 0.000 0.000 0.000 0.001 0.002 0.040
Camb-3 0.037 0.007 0.001 0079 0.000 0.000 0.000 0.002 0.002 0.129
Eastern part

Of-1 0.033 0.011 0.002 0058 0.001 0.000 0.000 0.003 0.002 0.110
0f-2 0.032 0.013 0.008 0.009 0.002 0.000 0001 0.003 0.002 0.069

Of-3 0.023 0.009 0007 0.005 0.001 0.000 0.001 0.004 0.002 0.053
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enrichment (Skordas et al. 2015; Yona, Fuad, and Hidayati 2018). Furthermore, a strong
positive correlation between ORP and metals/metalloid concentration is consistent with the
results of Kelderman and Osman (2007) and Popenda (2014). The correlations between
organic matter and ORP in sediments and metals/metalloid concentrations in mussel
M. galloprovincialis were not significant except Cu which was significantly positively corre-
lated to organic matter and ORP. The correlation between TOC and metals/metalloid con-
centration in sediments and biota was thoroughly not significant. This indicates that metals/
metalloid concentrations in sediments and biota are not controlled by TOC which was in line
with the findings of Skordas et al. (2015) and Javed, Ahmad, and Mashiatullah (2018). In the
case study of macroalgae, selected heavy metals have revealed significant correlations with
organic matter and ORP. In fact, positive correlations have been exhibited between CO, Mn,
Mo, and Pb concentrations in Ulva intestinalis and OM, on the one hand, and between Mn
concentrations in Ulva intestinalis and ORP, on the other hand. Nevertheless, negative
significant correlations have been revealed between Cr and Ni concentrations in Ceramium
rubrum and OM, on the one hand, and between As, Co, Mn and Ni concentrations in
Ceramium rubrum and ORP, on the other one. It is worth to mention that, no significant
correlations between selected metals in the two selected marine macroalgae species (Ulva
intestinalis, Ceramium rubrum) and TOC have been revealed. Such correlations could be
attributed to the biological, biochemical, physical-chemical and phylogenic characteristics of
selected macroalgae species (Ulva intestinalis and Ceramium rubrum).

3.7. Cluster analysis

Dendrogram based on Ward’s method, with Euclidian distances has been carried-out as the
criterion for forming clusters of elements were used to depict similarities between the concen-
tration of elements. Manganese, Zn, and Cu made cluster in the dendrogram constructed with
data from sediments, U. intestinalis, C. rubrum and mussel M. galloprovincialis (Figure 2). In
fact, in the case study of C. rubrum and U. intestinalis, obtained dendrograms have revealed two
classes. The first class has been composed of two subclasses, where the first subclass has been
presented by Mn and the second one has been represented by Cu and Zn. The second class has
been defined by As, Co, Cr, Mo, Ni, and Pb. In the case study of C. rubrum, the first subclass has
been covered by As, Cr, and Ni and the second one by Mo, Co, and Pb. In the case study of
U. intestinalis, such affinities have been modified. Accordingly, the first subclass articulated
around Mo and the second one covers Cr, Ni, As, Co, and Pb.

Cluster analysis applied to studied metal concentrations in mussel M. galloprovincialis
has shown a dendrogram combined from two classes. The first class contains Mo
(representing the first subclass), Co, and Pb (representing the second subclass) and As,
Cr, and Ni (representing the third subclass). The second class covers Zn, considered as the
first subclass, and Mn and Cu, representing the second subclass.

The cluster analysis carried out for metal concentrations in the sediments has revealed
a dendrogram containing two classes. The first class has been composed of two subclasses:
the first one revolves around Mn and the second subclass containing Cu and Zn.
The second class has been defined Mo, representing the first subclass, and Co, Ni, As,
Cr, and Pb, representing the second subclass.

For macroalgae species, mussels M. galloprovincialis and sediments statistical affinities
between analyzed metals have been revealed, generating diverse subclasses in classes in focus .
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Figure 2. Dendogram based on Ward’s method, with Euclidian distances depicting similarities between the
concentration of 9 metals in the sediment sampled along the Eastern Black Sea coast of Turkey in 2016.

3.8. Biota Sediment Accumulation Factor (BSAF)

The calculated values of BSAF for sediment and biota are given in Table 10. The BSAF has
been widely used to describe bioaccumulation of sediment-associated metals into tissues of
ecological receptors such as fish, bivalves, crustaceans, and polychaetes (Burkhard 2009;
Wong, Capel, and Nowell 2001). According to (Dallinger 1993), based on BSAF estimated
values, organism can be classified as macro-concentrator (BSAF > 2), micro-concentrator
(1 < BSAF and < 2), and de-concentrator (BSAF < 1). The de-concentrators are deduced to
release the metal in sediment. The BSAF values >2 depict the high ability of an organism to
absorb metal from sediment and hence can be used as a bioindicator for biomonitoring of
metals/metalloid contamination in the environment (Bohac 1999; Ndimele et al. 2014). In the
present study, the BSAF values of As in C. rubrum were >2 for stations Arak-1, Stirm-2, and
Of-3 while >1 for Camb-1. The highest mean BSAF value (>1) of Cr was estimated for
U. intestinalis at Stirm-1. The highest mean BSAF value of Mn was (>2) estimated for
U. intestinalis at Camb-3. The BSAF values of Zn in mussel M. galloprovincialis were found
to be >2 in samples caught from Arak-1, Stirm-1, and Stirm —2. The highest mean BSAF values
(>1) of Mo were estimated for M. galloprovincialis at stations from Arakli and Siirmene and
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for U. intestinalis at Arak-1. Furthermore, the BSAF value of Ni in U. intestinalis was higher
(>1) at Camb-2 from other areas as well as C. rubrum and M. galloprovincialis (Table 10).

The ANOSIM and SIMPER based on BSAF values for U. intestinalis, C. rubrum, and mussel
M. galloprovincialis revealed relatively smaller similarity among them compared to the element
concentrations. Mussel M. galloprovincialis shared low similarity than the U. intestinalis and
C. rubrum which had slightly greater similarity when compared together (Table 11).

4. Conclusion

Concentration levels, contamination hazard, and human health risk of arsenic, chromium,
cobalt, copper, manganese, molybdenum, nickel, lead, and zinc in sediments, two marine
macroalgae (U. intestinalis and C. rubrum) and a mollusk (mussel M. galloprovincialis)
collected from the Siirmene bay, Black Sea, Turkey have been carried out, revealing
a noteworthy finding. Accordingly, concentrations of analyzed metals in the sediments
have been higher than those recorded in biota. Moreover, the highest metal concentrations
have been recorded in the sediments sampled from the harbor (especially Of-1) area and
sites located in the eastern zone of the studied area (particularly Camb-2 and Camb-3).
Consequently, the sampled sediments from such areas have revealed the highest Cf values,
yielding to the highest contamination degree levels indicating thus such sediments have
been highly contaminated with analyzed metals, signaling a high ecological risk.

In the case study of marine macroalgae, U. intestinalis has revealed higher concentra-
tion levels of metals/metalloid than C. rubrum. Compared to other studies carried out
nearby the present study area, recorded concentrations of metals in selected macroalgae
species have been comparable.

For mussels M. galloprovincialis, highest levels of As, Cu, and Zn concentrations have
been recorded in the harbor area (Camb-3). For the remaining analyzed metals, highest
concentration levels have been recorded in mussels M. galloprovincialis sampled from the
eastern and western zones of the study area.

On the basis of the above finding, the THQ and the HI have been carried out in order
to evaluate the non-carcinogenic health risks posed by metals/metalloid via mussel
M. galloprovincialis consumption. The calculated THQ and HI have revealed values
below 1 for all sampling sites, indicating thus no adverse effects on human health.

Pearson correlation and Hierarchical Cluster Analysis have been carried out in order to
investigate association and similarities/dissimilarities, respectively, between analyzed
metals in sediments, macroalgae species (U. intestinalis and C. rubrum) and a mollusk
(mussel M. galloprovincialis). Accordingly, diverse positive and/or negative significant
correlations as well as statistical affinities explained by a grouping in subclasses have
been revealed between some analyzed metals and sediments, on the one hand, and
between the former and biota, on the other hand, indicating a probably common source
of enrichment and/or signaling the impact of biological, biochemical, physical-chemical,
and phylogenic characteristics of selected biota.

The BSAF has been carried out based on ANOSIM and SIMPER analysis, showing
a slight similarity between U. intestinalis and C. rubrum, on the one hand, and
insignificant similarity between intestinalis, C. rubrum, and mussel M. galloprovincialis.
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