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Abstract

In this paper, we study on the numerical solution of fractional nonlinear system of equations
representing the one-dimensional Cauchy problem arising in thermoelasticity. The proposed
technique is graceful amalgamations of Laplace transform technique with q-homotopy analysis
scheme and fractional derivative defined with Atangana–Baleanu (AB) operator. The fixed-
point hypothesis is considered in order to demonstrate the existence and uniqueness of the
obtained solution for the proposed fractional order model. In order to illustrate and validate the
efficiency of the future technique, we consider three different cases and analyzed the projected
model in terms of fractional order. Moreover, the physical behavior of the obtained solution
has been captured in terms of plots for diverse fractional order, and the numerical simulation is
demonstrated to ensure the exactness. The obtained results elucidate that the proposed scheme
is easy to implement, highly methodical as well as accurate to analyze the behavior of coupled
nonlinear differential equations of arbitrary order arisen in the connected areas of science and
engineering.

Keywords : Laplace Transform; Atangana–Baleanu Derivative; q-Homotopy Analysis Method;
Thermoelasticity; Fixed Point Theorem.

1. INTRODUCTION

Fractional calculus (FC) was originated in Newton’s
time, but lately it fascinated the attention of many
scholars. From the last 30 years, the most intrigu-
ing leaps in scientific and engineering applications
have been found within the framework of FC. The
concept of fractional derivative has been industri-
alized due to the complexities associated with het-
erogeneities phenomenon. The fractional differen-
tial operators are capable to capture the behav-
ior of multifaceted media having diffusion process.
It has been a very essential tool, and many prob-
lems can be illustrated more conveniently and more
accurately with differential equations having arbi-
trary order. Due to the swift development of math-
ematical techniques with computer software, many
researchers started to work on generalized calculus
to present their viewpoints while analyzing many
complex phenomena.

Numerous pioneering directions are prescribed
for the diverse definitions of FC by many senior
researchers and which prearranged the founda-
tion.1–6 Calculus with fractional order is associated
to practical ventures and it extensively employed
to nanotechnology,7 optics,8 human diseases,9 chaos
theory,10 and other areas.11–14 The numerical and
analytical solutions for these equations illustrating
these models have an important role in portray-
ing nature of nonlinear problems ascends in con-
nected areas of science. Many physicists and math-
ematicians are magnetized by the study of inter-
esting properties of materials like elasticity, ther-
mal conductivity, malleability and hardenability,

and many others. The study of properties of mate-
rials, such as thermal conductivity and its stresses
or elasticity and temperature, is known as thermoe-
lasticity. Recently, the study and analysis of these
concepts are fascinating many researchers associ-
ated with diverse areas connected to mathemat-
ics. The inevitability of irrational physical behav-
ior depiction of solid bodies by elastic deformations
obtained with thermal stresses inspired the more
prominent physicists and mathematicians as well as
engineers.15,16

In the present investigation, the nonlinear sys-
tem of equations representing the one-dimensional
Cauchy problem arising in thermoelasticity of the
form is17,18

utt − a (ux, v) uxx + b (ux, v) vx

= f1 (x, t) ,
(1)

c (ux, v) vt + b (ux, v)uxt − d (v) vxx

= f2 (x, t) ,

where u and v are, respectively, displacement and
temperature difference, a(ux, v), b(ux, v), c(ux, v),
d(v), f1(x, t), and f2 (x, t) are specified smooth
functions. The considered nonlinear coupled prob-
lem recently fascinated the attention of researchers
from different areas of science. Since system (1)
plays a significant role in portraying several non-
linear phenomena and also which are the overviews
of diverse complex problems. Many authors find
and analyzed the solution using analytical as well
as numerical schemes; for instance, authors in
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Ref. 18 illustrated the numerical solution for con-
sidered coupled system with the aid of variational
iteration algorithm. The asymptotic stability, global
existence, and uniqueness have been illustrated in
Ref. 19. The author in Ref. 20 hired Laplace decom-
position technique in order to find the singular and
nonsingular solutions for coupled system describ-
ing the physical behavior of thermoelasticity of the
materials. The authors in Ref. 21 find the numerical
solution for system (1) and presented some interest-
ing results. The Adomian decomposition scheme is
applied by the authors in Ref. 22 to find the numer-
ical solution for the cited model.

In the present scenario, many important and non-
linear models are methodically and effectively ana-
lyzed with the help of FC. There have been diverse
definitions suggested by many senior research schol-
ars, for instance, Riemann, Liouville, Caputo, and
Fabrizio. However, these definitions have their own
limitations. The Riemann–Liouville derivative is
unable to explain the importance of the initial con-
ditions; the Caputo derivative has overcome this
shortcoming but is impotent to explain the singu-
lar kernel of the phenomena. Later, in 2015 Caputo
and Fabrizio defeated the above obliges,23 and many
researchers considered this derivative in order to
analyze and find the solution for diverse classes of
nonlinear complex problems. But some issues were
pointed out in CF derivative, like nonsingular kernel
and nonlocal, these properties are very essential in
describing the physical behavior and nature of the
nonlinear problems. In 2016, Atangana and Baleanu
introduced and natured the novel fractional deriva-
tive, namely AB derivative. AB derivative defined
with the aid of Mittag-Leffler functions.24 This frac-
tional derivative buried all the above-cited issues
and help us to understand the natural phenomena
in the systematic and effective way.

Recently, many mathematicians and physicists
developed very effective and more accurate meth-
ods in order to find and analyze the solution for
complex and nonlinear problems arising in sci-
ence and engineering. In connection with this, the
homotopy analysis method (HAM) was proposed
by Chinese mathematician Liao Shijun.25,26 HAM
has been profitably and effectively applied to study
the behavior of nonlinear problems without per-
turbation or linearization. But, for computational
work, HAM requires huge memory of comput-
ers and also time. Hence, there is an essence of
the amalgamation of this method with well-known
transform techniques.

In the present investigation, we put an effort to
find and analyze behavior of solution obtained for
the system of equations presented in Eq. (1) with
fractional order of the form

ABC
a Dα+1

t u (x, t)− a (ux, v) uxx

+b (ux, v) vx = f1 (x, t) , 0 < α ≤ 1,
(2)

c (ux, v)
ABC
a Dβ

t v (x, t) + b (ux, v) uxt

−d (v) vxx = f2 (x, t) , 0 < β ≤ 1,

where α and β are fractional orders of the system,
defined with AB fractional operator.

The fractional order is introduced in order to
incorporate the memory effects and hereditary
consequence in the system and these properties
aid us to capture essential physical properties of
the complex problems. The future algorithm is
the combination of q-HAM with LT.27 Since q-
HATM is an improved scheme of HAM, it does not
require discretization, perturbation, or lineariza-
tion. Recently, due to its reliability and efficacy,
the considered method is exceptionally applied by
many researchers to understand physical behavior
diverse classes of complex problems.28–34 The pro-
posed method offers us with more freedom to con-
sider diverse class of initial guesses and the equa-
tion type complex as well as nonlinear problems;
because of this, the complex NDEs can be directly
solved. The future method offers simple algorithm
to evaluate the solution and it is natured by the
homotopy and axillary parameters, which provide
the rapid convergence in the obtained solution for
nonlinear portion of the given problem. Meanwhile,
it has prodigious generality because it plausibly
contains the results obtained by many algorithms
like q-HAM, HPM, ADM, and some other tradi-
tional techniques. The considered method can pre-
serve great accuracy while decreasing the compu-
tational time and work in comparison with other
methods.

2. PRELIMINARIES

Recently, many authors have considered various
derivatives to analyze a diverse class of models
in comparison with classical order.35–47 In this
section, we define basic notion of AB derivatives
and integrals.24
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Definition 1. The fractional Atangana–Baleanu–
Caputo derivative for a function f ∈ H1(a, b)(b >
a, α ∈ [0, 1]) is presented as follows:

ABC
a Dα

t (f (t))=
B [α]

1− α

∫ t

a
f

′
(ϑ)Eα

[
α
(t− ϑ)α

α− 1

]
dϑ,

(3)

where B [α] is a normalization function such that
B(0) = B(1) = 1.

Definition 2. The AB derivative of fractional
order for a function f ∈ H1 (a, b) , b > a, α ∈ [0, 1]
in Riemann–Liouville sense is presented as follows:

ABR
a Dα

t (f (t))=
B [α]

1− α

d

dt

∫ t

a
f (ϑ)Eα

[
α
(t−ϑ)α

α−1

]
dϑ.

(4)

Definition 3. The fractional AB integral related
to the nonlocal kernel is defined by

AB
a Iαt (f (t)) =

1− α

B [α]
f (t) +

α

B [α] Γ (α)

×
∫ t

a
f (ϑ) (t− ϑ)α−1 dϑ. (5)

Definition 4. The Laplace transform (LT) of AB
derivative is defined by

L
[
ABR
0 Dα

t (f (t))
]
=

B [α]

1− α

sαL [f (t)]− sα−1f (0)

sα + (α/(1 − α))
.

(6)

Theorem 1. The following Lipschitz conditions,
respectively, hold true for both Riemann–Liouville
and AB derivatives defined in Eqs. (3) and (4)24:∥∥ABC

a Dα
t f1 (t)− ABC

a Dα
t f2 (t)

∥∥ < K1 ‖f1 (x)
−f2 (x)‖

(7)

and∥∥ABC
a Dα

t f1 (t)− ABC
a Dα

t f2 (t)
∥∥ < K2‖f1(x).

−f2(x)‖.
(8)

Theorem 2. The time-fractional differential equa-
tion ABC

a Dα
t f1 (t) = s (t) has a unique solution and

which is defined as24

f (t) =
(1− α)

B [α]
s (t) +

α

B [α] Γ (α)

×
∫ t

0
s (ς) (t− ς)α−1 dς. (9)

3. FUNDAMENTAL IDEA OF
THE PROPOSED SCHEME

In this segment, we consider the arbitrary order
differential equation in order to demonstrate the
fundamental solution procedure of the proposed
scheme:

ABC
a Dα

t v (x, t) +Rv (x, t) +N v (x, t) = f (x, t) ,

n− 1 < α ≤ n, (10)

with the initial condition

v (x, 0) = g (x) , (11)

where ABC
a Dα

t v (x, t) symbolize the AB derivative
of v (x, t) f, (x, t) signifies the source term, R and
N, respectively, denote the linear and nonlinear dif-
ferential operator. On using the LT on Eq. (10), we
have after simplification

L [v (x, t)]− g (x)

s
+

1

B [α]

(
1− α+

α

sα

)
×{L [Rv (x, t)] + L [N v (x, t)]−L [f (x, t)]} = 0.

(12)

The nonlinear operator is defined as follows:

N [ϕ (x, t; q)] = L [ϕ (x, t; q)]− g (x)

s

+
1

B [α]

(
1− α+

α

sα

)
×{L [Rϕ (x, t; q)]

+L [Nϕ (x, t; q)]

−L [f (x, t)]} . (13)

Here, ϕ(x, t; q) is the real-valued function with
respect to xt and

(
q ∈ [0, 1

n

])
. Now, we define a

homotopy as follows:

(1−nq)L [ϕ (x, t; q)−v0 (x, t)]=�qN [ϕ (x, t; q)] ,

(14)

whereL is signifying LT , q ∈ [
0, 1

n

]
(n ≥ 1) is

the embedding parameter, and � �= is an auxiliary
parameter. For q = 0 and q = 1

n , the results given
below hold true

ϕ (x, t; 0) = v0 (x, t) , ϕ

(
x, t;

1

n

)
= v (x, t) . (15)

Thus, by intensifying q from to 1
n , the solution

ϕ(x, t; q) varies from v0(x, t) to v(x, t). By using
the Taylor theorem near to q, we define ϕ (x, t; q) in
series form and then we get

ϕ (x, t; q) = v0 (x, t) +
∞∑

m=1

vm (x, t) qm, (16)
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where

vm (x, t) =
1

m!

∂mϕ(x, t; q)

∂qm

∣∣∣∣
q=0

. (17)

The series (14) converges at q = 1
n for the proper

choice of v0 (x, t) , n and �. Then

v (x, t) = v0 (x, t) +
∞∑

m=1

vm (x, t)

(
1

n

)m

. (18)

Now, m-times differentiating Eq. (15) with q and
later dividing by m! and then putting q = 0, we
obtain

L[vm (x, t)− kmvm−1 (x, t)] = �Rm (�vm−1) , (19)

where the vectors are defined as

�vm = {v0 (x, t) , v1 (x, t) , . . . , vm (x, t)} . (20)

On applying inverse LT on Eq. (19), one can get

vm (x, t) = kmvm−1 (x, t) + �L−1 [Rm (�vm−1)] ,

(21)

where

Rm (�vm−1) = L [vm−1 (x, t)]

−
(
1− km

n

)(
g (x)

s
+

1

B [α]

×
(
1− α+

α

sα

)
L [f (x, t)]

)
+

1

B [α]

(
1− α+

α

sα

)
×L [Rvm−1 +Hm−1] , (22)

and

km =

{
0, m ≤ 1,
n, m > 1.

(23)

In Eq. (22), Hm signifies homotopy polynomial and
presented as follows:

Hm =
1

m!

[
∂mϕ (x, t; q)

∂qm

]
q=0

and

ϕ (x, t; q) = ϕ0 + qϕ1 + q2ϕ2 + · · · .
(24)

By the aid of Eqs. (21) and (22), one can get

vm (x, t) = (km + �) vm−1 (x, t)

−
(
1− km

n

)
L−1

(
g (x)

s

+
1

B [α]

(
1− α+

α

sα

)
L [f (x, t)]

)

+ �L−1

{
1

B [α]

(
1− α+

α

sα

)
× L[Rvm−1 +Hm−1]} . (25)

Using Eq. (25), one can get the series of vm (x, t).
Lastly, the series q-HATM solution is defined as

v (x, t) = v0 (x, t) +

∞∑
m=1

vm (x, t)

(
1

n

)m

. (26)

4. SOLUTION FOR FKGZ
EQUATIONS

In order to present the solution procedure and effi-
ciency of the future scheme, in this segment, we
consider KGZ equations of fractional order with
two distinct cases. Further by the help of obtained
results, we made an attempt to capture the behavior
of q-HATM solution for different fractional orders.
By substituting a (ux, v) = 2 − uxv, b (ux, v) =
2+uxv, c (ux, v) = 1, d (v) = v in Eq. (2), we have

ABC
a Dα+1

t u (x, t)− (2− vux) uxx

+ (2 + vux) vx = f1 (x, t) ,

ABC
a Dβ

t v (x, t)

+ (2 + vux) uxt − vvxx = f2 (x, t) ,

(27)

with initial conditions

u (x, 0) = v (x, 0) = g (x) ,

ut (x, 0) = 0.
(28)

Taking LT on Eq. (27) and then using Eq. (28)
and by the help of results derived in Ref. 48, we get

L [u (x, t)] =
1

s
(g (x))− 1

B [α]

(
sα + α (1− sα)

sα+1

)

×L

{(
2− v

∂u

∂x

)
∂2u

∂x2

−
(
2 + v

∂u

∂x

)
∂v

∂x
+ f1

}
,

(29)

L [v (x, t)] =
1

s
(g (x)) +

1

B [β]

(
sβ − β

(
1− sβ

)
sβ

)

×L

{(
2 + v

∂u

∂x

)
∂2u

∂x∂t

−v
∂2v

∂x2
− f2

}
.
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The nonlinear operator N is presented with the
help of future algorithm48 as below:

N1 [ϕ1 (x, t; q) , ϕ2 (x, t; q)] = L [ϕ1 (x, t; q)]

−1

s
(g (x)) +

1

B [α]

(
sα + α (1− sα)

sα+1

)

×L

(
2−ϕ2

∂ϕ1

∂x

)
∂2ϕ1

∂x2
−
(
2 + ϕ2

∂ϕ1

∂x

)

×∂ϕ2

∂x
+ f1,

N2 [ϕ1 (x, t; q) , ϕ2 (x, t; q)] = L [ϕ2 (x, t; q)]

−1

s
(g (x))− 1

B [β]

(
sβ − β

(
1− sβ

)
sβ

)

×L

(
2 + ϕ2

∂ϕ1

∂x

)
∂2ϕ1

∂x∂t
− ϕ2

∂2ϕ2

∂x2
− f2.

(30)

The deformation equation of mth order by the
help of q-HATM at H(x, t) = 1 is given as follows:

L [um (x, t)−kmum−1 (x, t)]=�R1,m [�um−1, �vm−1] ,

L [vm (x, t)−kmvm−1 (x, t)]=�R2,m [�um−1, �vm−1] ,

(31)

where

R1,m [�um−1, �vm−1] = L [um−1 (x, t)]

−
(
1− km

n

){
1

s
(g (x))

}

− 1

B [α]

(
sα + α (1− sα)

sα+1

)

×L2
∂2um−1

∂x2
−

m−1∑
i=0

i∑
j=0

vj
∂ui−j

∂x

∂2um−1−i

∂x2

− 2
∂vm−1

∂x
−

m−1∑
i=0

i∑
j=0

vj
∂ui−j

∂x

∂vm−1−i

∂x
+ f1,

(32)
R2,m [�um−1, �vm−1] = L [vm−1 (x, t)]

+

(
1− km

n

){
1

s
(g (x))

}

+
1

B [β]

(
sβ − β

(
1− sβ

)
sβ

)
L2

∂2um−1

∂x∂t

+
m−1∑
i=0

i∑
j=0

vj
∂ui−j

∂x

∂2um−1−i

∂x∂t

−
m−1∑
i=0

vi
∂2vm−1−i

∂x2
− f2.

On applying inverse LT on Eq. (31), it reduces to

um (x, t) = kmum−1 (x, t)

+�L−1 {R1,m [�um−1, �vm−1]} , (33)
vm (x, t) = kmvm−1 (x, t)

+�L−1 {R2,m [�um−1, �vm−1]} .
Now, by simplifying the above equations system-

atically, we can evaluate the terms of the series solu-
tion

u (x, t) = u0 (x, t) +

∞∑
m=1

um (x, t)

(
1

n

)m

,

v (x, t) = v0 (x, t) +

∞∑
m=1

vm (x, t)

(
1

n

)m

.

(34)

5. EXISTENCE OF SOLUTION

Here, we considered the fixed-point theorem in
order to demonstrate the existence of the solution
for the proposed model. Since the consid-
ered model cited in the system (27) is non-
local as well as complex; there are no par-
ticular algorithms or methods to evaluate the
exact solutions. However, under some partic-
ular conditions, the existence of the solution
assurances. Now, system (27) is considered as fol-
lows: {

ABC
0 Dα

t [u (x, t)] = G1 (x, t, u) ,
ABC
0 Dβ

t [v (x, t)] = G2 (x, t, v) .
(35)

The foregoing system is transformed to the
Volterra integral equation using Theorem 2 and is
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u (x, t)− u (x, 0) =
(1− α)

B (α)
G1 (x, t, u)

+
α

B (α) Γ (α)

∫ t

0
G1 (x, ζ, u) (t− ζ)α−1 dζ,

v (x, t)− v (x, 0) =
(1− β)

B (β)
G2 (x, t, v)

+
β

B (β) Γ (β)

∫ t

0
G2 (x, ζ, v) (t− ζ)β−1 dζ.

(36)

Theorem 3. The kernel G1 satisfies the Lipschitz
condition and contraction if the condition 0 ≤(
2δ2 + 1

2λ2δ (a+ b) + τ2 (2 + λ2δ) + ξ1
)
< 1 holds.

Proof. In order to prove the required result, we
consider the two functions u and u1, then

‖G1(x, t, u)−G1(x, t, u1)‖

=

∥∥∥∥−2
∂2

∂x2
[u(x, t) − u(x, t1)] + v

(
∂

∂x
[u(x, t)
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−u (x, t1)]
∂2

∂x2
[u(x, t)− u (x, t1)]

)

+2
∂v

∂x
+ v

∂v

∂x

(
∂

∂x
[u (x, t)− u (x, t1)]

)
− f1

∥∥∥∥
=

∥∥∥∥−2
∂2

∂x2
[u (x, t)− u (x, t1)]

+
1

2
v

(
∂

∂x

[(
∂u (x, t)

∂x

)2

−
(
∂u (x, t1)

∂x

)2
])

+2
∂v

∂x
+ v

∂v

∂x

(
∂

∂x
[u (x, t)− u (x, t1)]

)
− f1

∥∥∥∥
≤
∥∥∥∥2δ2 + 1

2
λ
2
δ (a+ b) + τ2 (2 + λ2δ) + ξ1

∥∥∥∥
‖u (x, t)− u(x, t1)‖

≤
(
2δ2 +

1

2
λ2δ (a+ b) + τ2 (2 + λ2δ) + ξ1

)

‖u(x, t)− u(x, t1)‖ , (37)

where ‖v (x, t)‖ ≤ λ2 be the bounded function, δ
is the differential operator,

∥∥ ∂v
∂x

∥∥ ≤ τ2,
∥∥∂u
∂x

∥∥ ≤
a,
∥∥∥∂u1

∂x

∥∥∥ ≤ b, and f1 is also a bounded function

(‖f1‖ ≤ ξ1). Putting η1 = 2δ2 + λ2δ (a+ b) +
τ2 (2 + λ2δ) + ξ1 in the above inequality, then we
have

‖G1(x, t, u)−G1(x, t, u1)‖ ≤ η1‖u(x, t)−u(x, t1)‖.
(38)

This gives that 0 the Lipschitz condition is
obtained for G2. Further, we can see that if 0 ≤(
2δ2 + 1

2λ2δ (a+ b) + τ2 (2 + λ2δ) + ξ1
)

< 1, then
it implies the contraction. The remaining cases can
be verified in a similar manner and which is given
as follows:

‖G2(x, t, v)−G2(x, t, v1)‖ ≤ η2‖v(x, t)−v(x, t1)‖.
(39)

The recursive form of Eq. (36) is defined as fol-
lows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un (x, t) =
(1− α)

B (α)
G1 (x, t, un−1) +

α

B (α) Γ (α)∫ t

0
G1 (x, ζ, un−1) (t− ζ)α−1 dζ,

vn (x, t) =
(1− β)

B (β)
G2 (x, t, vn−1) +

β

B (β) Γ (β)∫ t

0
G2 (x, ζ, vn−1) (t− ζ)β−1 dζ.

(40)

The associated initial conditions are

u(x, 0) = u0(x, t) and v(x, 0) = v0(x, t).

(41)

The successive difference between the terms is
presented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1n(x, t) = un(x, t)− un−1(x, t)

=
(1− α)

B(α)
(G1 (x, t, un−1)

−G1 (x, t, un−2)) +
α

B(α)Γ(α)

×
∫ t

0
G1 (x, ζ, un−1) (t− ζ)α−1dζ,

φ2n(x, t) = vn(x, t)− vn−1(x, t)

=
(1− β)

B(β)
(G2 (x, t, vn−1)

−G2 (x, t, vn−2)) +
β

B(β)Γ(β)

×
∫ t

0
G2 (x, ζ, vn−1) (t− ζ)β−1 dζ.

(42)

Note that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un (x, t) =

n∑
i=1

φ1i (x, t),

vn (x, t) =

n∑
i=1

φ2i (x, t).

(43)

By using Eq. (38) after applying the norm on the
second equation of system (42), one can get

‖φ1n(x, t)‖
≤ (1− α)

B(α)
η1‖φ1(n−1)(x, t)‖

+
α

B(α)Γ(α)
η1

∫ t

0
‖φ1(n−1)(x, ζ)‖dζ.

(44)

Similarly, we have

‖φ2n(x, t)‖
≤ (1− β)

B(β)
η2‖φ2(n−1)(x, t)‖

+
β

B(β)Γ(β)
η2

∫ t

0
‖φ2(n−1)(x, ζ)‖dζ.

(45)

We prove the following theorem by using the
above result.
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Theorem 4. The solution for system (27) will exist
and unique if we have specific t0 then

(1− α)

B (α)
η1 +

α

B (α) Γ (α)
η1 < 1,

(1− β)

B (β)
η2 +

β

B (β) Γ (β)
η2 < 1.

Proof. Let us consider the bounded functions
u (x, t) and v (x, t) satisfying the Lipschitz condi-
tion. Then, by Eqs. (43) and (45), we have

‖φ1i (x, t)‖≤‖un (x, 0)‖
[
(1−α)

B (α)
η1+

α

B (α) Γ (α)
η1

]n
,

‖φ2i (x, t)‖≤‖vn (x, 0)‖
[
(1−β)

B (β)
η2+

β

B (β) Γ (β)
η2

]n
.

(46)

Therefore, the continuity as well as existence for
the obtained solutions is proved. Subsequently, in
order to show that system (46) is a solution for sys-
tem (27), we consider

u (x, t)− u (x, 0) = un (x, t)−K1n (x, t) ,
v (x, t)− v (x, 0) = vn (x, t)−K2n (x, t) .

(47)

In order to obtain a result, we consider

‖K1n(x, t)‖
=

∥∥∥∥(1− α)

B (α)
(G1(x, t, u)−G1(x, t, un−1))

+
α

B(α)Γ(α)

∫ t

0
(t− ζ)μ−1 (G1(x, ζ, u)

−G1(x, ζ, un−1))dζ ≤ (1− α)

B(α)
‖(G1 (x, t, u)

−G1 (x, t, un−1))‖+ α

B (α) Γ (α)

×
∫ t

0
‖(G1 (x, ζ, u)−G1 (x, ζ, un−1))‖dζ

≤ (1− α)

B (α)
η1 ‖u− un−1‖

+
α

B (α) Γ (α)
η1 ‖u− un−1‖ t. (48)

Similarly, at t0 we can obtain

‖K1n (x, t) ‖≤
(
(1− α)

B (α)
+

α t0
B (α) Γ (α)

)n+1

ηn+1
1 M.

(49)

As n approaches to ∞, we can see that from
Eq. (50), ‖K1n (x, t) ‖ tends to 0. Similarly, we can
verify for ‖K2n(x, t)‖.

Next, it is a necessity to demonstrate uniqueness
for the solution of the considered model. Suppose
u∗ (x, t)and v∗(x, t) be the set of other solutions,
then we have

u(x, t)− u∗(x, t) =
(1− α)

B(α)
(G1(x, t, u)

−G1(x, t, u
∗))

+
α

B(α)Γ(α)

∫ t

0
(G1(x, ζ, u)

−G1 (x, ζ, u
∗))dζ.

(50)

On applying norm, Eq. (50) simplifies to

‖u(x, t)− u∗(x, t)‖
=

∥∥∥∥(1− α)

B(α)
(G1(x, t, u) −G1 (x, t, u

∗))

+
α

B(α)Γ(α)

∫ t

0
(G1 (x, ζ, u)−G1 (x, ζ, u

∗))dζ
∥∥∥∥

≤ (1− α)

B(α)
η1 ‖u(x, t)− u∗(x, t)‖

+
α

B(α)Γ(α)
η1t ‖u(x, t)− u∗(x, t)‖ . (51)

On simplification

‖u (x, t)− u∗ (x, t)‖
(
1− (1− α)

B (α)
η1

− α

B (α) Γ (α)
η1t

)
≤ 0. (52)

From the above condition, it is clear that
u (x, t)− u∗ (x, t), if(

1− (1− α)

B (α)
η1 − α

B (α) Γ (α)
η1t

)
≥ 0. (53)

Hence, Eq. (53) evidences our essential result.

Theorem 5. Suppose un(x, t), vn(x, t), u(x, t), and
v(x, t) are defined in the Banach space (B[0, T ], ‖ ·
‖). Then series solution defined in Eq. (26) con-
verges to the solution of Eq. (10), if 0 < λ1 < 1 and
0 < λ2 < 1.

Proof. Let us consider the sequence {Sn} and
which is the partial sum of Eq. (26), then we have
to prove {Sn} is Cauchy sequence in (B [0, T ] , ‖·‖).
Now consider

‖Sn+1 (x, t)− Sn (x, t)‖
= ‖un+1 (x, t)‖ ≤ λ1 ‖un (x, t)‖
≤ λ2

1 ‖un−1 (x, t)‖ ≤ · · · ≤ λn+1
1 ‖u0 (x, t)‖ .

(54)
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Now, we have for every n, m ∈ N (m ≤ n)

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2)

+ · · · + (Sm+1 − Sm)‖
≤ ‖Sn − Sn−1‖+ ‖Sn−1 − Sn−2‖+ · · ·

+ ‖Sm+1 − Sm‖
≤ (λn

1 + λn−1
1 + · · ·+ λm+1

1

) ‖u0‖
≤ λm+1

1 (λn−m−1
1 + λn−m−2

1 + · · ·
+λ1 + 1) ‖u0‖

≤ λm+1
1

(
1− λn−m

1

1− λ1

)
‖u0‖ . (55)

But 0 < λ1 < 1, therefore ‖Sn − Sm‖ = 0. Hence,
{Sn} is the Cauchy sequence. Similarly, we can
demonstrate for the second case. This proves the
required result.

Theorem 6. The maximum absolute error of the
series solution (26) of Eq. (10) is estimated as∥∥∥∥∥u (x, t)−

M∑
n=0

un(x, t)

∥∥∥∥∥ ≤ λM+1
1

1− λ1
‖u0 (x, t)‖ .

Proof. By the help of Eq. (55), we get

‖u (x, t)− Sn‖ = λm+1
1

(
1− λn−m

1

1− λ1

)
‖u0 (x, t)‖ .

But 0 < λ1 < 0 ⇒ 1− λn−m
1 < 1. Hence, we have∥∥∥∥∥u (x, t)−

M∑
n=0

un(x, t)

∥∥∥∥∥ ≤ λM+1
1

1− λ1
‖u0 (x, t)‖ .

This ends the proof.

6. NUMERICAL RESULTS AND
DISCUSSION

Here, we consider three different cases in order to
present applicability of the future scheme with dis-
tinct initial conditions.

Case 1. Consider Eqs. (27) and (28) as

ABC
a Dα+1

t u (x, t)− (2− vux)uxx

+(2 + vux) vx − f1 (x, t) = 0,
ABC
a Dβ

t v (x, t) + (2 + vux) uxt

−vvxx − f2 (x, t) = 0, (56)

with

u (x, 0) = v (x, 0) =
1

1 + x2
,

ut (x, 0) = 0.
(57)

The analytical solution for the proposed system is

u (x, t) =
1 + t2

1 + x2
, v (x, t) =

1 + t

1 + x2
. (58)

Now, consider

f1 (x, t) =
2

1 + x2
− 2

(
1 + t2

) (
3x2 − 1

)
(1 + x2)3

a (w1, w2)

−2x (1 + t)

(1 + x2)2
b (w1, w2) ,

f2 (x, t) =
1

1 + x2
c (w1, w2)− 4xt

(1 + x2)2
b (w1, w2)

−2
(
3x2 − 1

)
(1 + t)

(1 + x2)3
d (w2) ,

w1 (x, t) = −2x
(
1 + t2

)
(1 + x2)2

and

w2 (x, t) =
1 + t

1 + x2
.

Then, we can obtain the terms of the series solution
by using the initial conditions

u0(x, t) =
1

1 + x2
and v0(x, t) =

1

1 + x2
.

Case 2. Consider fractional nonlinear coupled sys-
tem describing thermoelasticity of the form:

ABC
a Dα+1

t u (x, t)− uxx + (vux) vx

+e−x+t = 0, 0 < α ≤ 1,
(59)

ABC
a Dβ

t v (x, t)− vxx + (vux) uxt

+ex−t = 0, 0 < β ≤ 1,

with

u (x, 0) = ex, v (x, 0) = e−x,

ut (x, 0) = −ex.
(60)

The analytical solution for the proposed system is

u (x, t) = ex−t, v (x, t) = e−x+t. (61)

Then, we can obtain the terms of the series solution
using u0 (x, t) = ex (1− t) and v0 (x, t) = e−x.

Case 3. Consider fractional nonlinear coupled sys-
tem describing thermoelasticity of the form

ABC
a Dα+1

t u (x, t)− (vux)x + vx − 2x+ 6x2

+2t2 + 2 = 0, 0 < α ≤ 1,
ABC
a Dβ

t v (x, t)− (uvx)x + uxt − 2t2 − 2t

+6x2 = 0, 0 < β ≤ 1, (62)
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Table 1 Comparison of q-HATM Solution with VIM18 at � = −1, n = 1, and α = β = 1
for Different x and t.

x |uExact−uVIM| ∣
∣uExact−uq-HATM

∣
∣ |vExact−vVIM| ∣

∣vExact−vq-HATM

∣
∣

5 1.14214 × 10−5 1.90096 × 10−6 1.01307 × 10−4 5.98056 × 10−6

6 5.66626 × 10−6 1.12189 × 10−6 4.88405 × 10−5 3.52874 × 10−6

7 3.11183 × 10−6 7.14536 × 10−7 2.64856 × 10−5 2.24926 × 10−6

8 1.84483 × 10−6 4.82043 × 10−7 1.55626 × 10−5 1.51905 × 10−6

9 1.16070 × 10−6 3.40099 × 10−7 9.72698 × 10−6 1.07293 × 10−6

1 07.65770 × 10−7 2.48697 × 10−7 6.38473 × 10−6 7.85384 × 10−7

1 15.25173 × 10−7 1.87252 × 10−7 4.36097 × 10−6 5.91892 × 10−7

1 23.71954 × 10−7 1.44453 × 10−7 3.07843 × 10−6 4.56989 × 10−7

1 32.70692 × 10−7 1.13744 × 10−7 2.23417 × 10−6 3.60104 × 10−7

1 42.01627 × 10−7 9.11447 × 10−8 1.66026 × 10−6 2.88749 × 10−7

1 51.53229 × 10−7 7.41497 × 10−8 1.25921 × 10−6 2.35048 × 10−7

Table 2 Numerical Stimulation for u (x, t) of q-HATM Solution at
� = −1, n = 1, and α = β = 1 with Different x and t.

x t
∣
∣
∣uExact−u(2)

∣
∣
∣

∣
∣
∣uExact−u(3)

∣
∣
∣

∣
∣
∣uExact−u(4)

∣
∣
∣

0.25

0.025 1.67755 × 10−3 2.33885 × 10−4 1.20577 × 10−6

0.05 6.92276 × 10−3 9.54352 × 10−4 1.64025 × 10−5

0.075 1.59986 × 10−2 2.21470 × 10−3 7.85886 × 10−5

0.1 2.89892 × 10−2 4.09961 × 10−3 2.42402 × 10−4

0.50

0.025 5.05158 × 10−4 6.40525 × 10−5 3.57226 × 10−6

0.05 2.18546 × 10−3 2.49191 × 10−4 2.62338 × 10−5

0.075 5.35146 × 10−3 5.58497 × 10−4 8.03665 × 10−5

0.1 1.04013 × 10−2 1.01489 × 10−3 1.70485 × 10−4

0.75

0.025 2.05386 × 10−4 3.66385 × 10−5 7.03323 × 10−6

0.05 7.97441 × 10−4 1.74416 × 10−4 5.70561 × 10−5

0.075 1.68825 × 10−3 4.54420 × 10−4 1.95176 × 10−4

0.1 2.68415 × 10−3 9.15173 × 10−4 4.68693 × 10−4

1

0.025 3.75300 × 10−4 5.92073 × 10−5 7.03125 × 10−6

0.05 1.54577 × 10−3 2.67576 × 10−4 5.78125 × 10−5

0.075 3.57446 × 10−3 6.76075 × 10−4 2.00391 × 10−4

0.1 6.50367 × 10−3 1.34166 × 10−3 4.87506 × 10−4

with

u (x, 0) = v (x, 0) = x2,

ut (x, 0) = 0.
(63)

The analytical solution for the proposed system is

u (x, t) = x2 − t2, v (x, t) = x2 + t2. (64)

Then, we can obtain the terms of the series solu-
tion with initial conditions

u0 (x, t) = x2 and v0 (x, t) = x2.

In the present investigation, we find the solu-
tion for coupled equations arising in thermoelas-
ticity having arbitrary order using a novel scheme,
namely, q-HATM with the help of Mittag-Leffler

law. In the present segment, we demonstrate the
numerical simulation for the considered coupled sys-
tem considered in Case 1, which is cited in Tables
1–3. Table 1 particularly shows the comparison of
obtained solution with solution obtained by VIM
in terms of absolute error. Further, in Tables 2
and 3, we demonstrated the efficiency of the future
method and we conform that as number of itera-
tions increases the obtained solution gets close to
analytical solution. From the tables, we can see that
the proposed scheme is more accurate.

On the contrary, in order to capture the behav-
ior of q-HATM solution for diverse value of the
parameters we plot the 2D and 3D plots. In Fig. 1,
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Table 3 Numerical Stimulation for v (x, t) of q-HATM Solution at
� = −1, n = 1, and α = β = 1 with Different x and t.

x t
∣
∣
∣vExact−v(2)

∣
∣
∣

∣
∣
∣vExact−v(3)

∣
∣
∣

∣
∣
∣vExact−v(4)

∣
∣
∣

0.25

0.025 1.09084 × 10−1 5.64302 × 10−2 7.43209 × 10−4

0.05 2.13480 × 10−1 1.15295 × 10−1 3.07744 × 10−3

0.075 3.08307 × 10−1 1.77200 × 10−1 7.16258 × 10−3

0.1 3.84297 × 10−1 2.42780 × 10−1 1.31628 × 10−2

0.50

0.025 5.55727 × 10−2 2.37751 × 10−2 9.20698 × 10−4

0.05 1.22561 × 10−1 4.59247 × 10−2 3.62578 × 10−3

0.075 2.00233 × 10−1 6.81455 × 10−2 8.02443 × 10−3

0.1 2.85014 × 10−1 9.22703 × 10−2 1.40182 × 10−2

0.75

0.025 2.01840 × 10−2 7.84490 × 10−3 1.51823 × 10−3

0.05 4.10058 × 10−2 1.13435 × 10−2 6.05474 × 10−3

0.075 6.49530 × 10−2 1.11965 × 10−2 1.35784 × 10−2

0.1 9.54470 × 10−2 8.18341 × 10−3 2.40522 × 10−2

1

0.025 9.47747 × 10−3 3.95993 × 10−3 1.40615 × 10−3

0.05 1.31780 × 10−2 3.35122 × 10−3 5.62336 × 10−3

0.075 1.18853 × 10−2 1.79649 × 10−3 1.26477 × 10−2

0.1 6.94542 × 10−3 1.14357 × 10−2 2.24725 × 10−2

Fig. 1 (a) Surface of u (x, t), (b) 2D plot of u (x, t) at t = 1, (c) surface of v (x, t), (d) 2D plot of v (x, t) at t = 1, (e)
coupled surface of the obtained solution cited in Case 1 at � = −1, n = 1, and α = β = 1.
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we present the nature of q-HATM solution and
coupled surface of the obtained solution for cou-
pled system defined in Case 1. The coupled surface
of the obtained solution for the proposed model has
been illustrated in order to understand the physi-
cal behavior of the coupled system. The natures of
q-HATM solution for different arbitrary orders are
presented in Fig. 2 in terms of 2D plots. Similarly,
we capture the physical variation of considered cou-
pled system defined in Case 2 and Case 3 and are,
respectively, presented in Figs. 4 and 7 in terms of
3D plots with coupled surfaces at classical order.
Meanwhile, the response of q-HATM solution for
different arbitrary orders has been demonstrated

in Figs. 5 and 8 for Case 2 and Case 3, respec-
tively. In order to analyze the behavior of obtained
solution with respect to homotopy parameter(�),
the �-curves are drowned with diverse μ and pre-
sented in Figs. 3, 6, and 9 for Cases 1–3. These
curves aid to control and adjust the convergence
region of the q-HATM solution. Meanwhile, the hor-
izontal line in the plots represents the convergence
region. For an appropriate value of �, the obtained
solution quickly converges to exact solution. These
plots aid us to simulate and exhibit the physical
properties of nonlinear phenomena arising in sci-
ence and technology in order to study and analyze
their nature with the aid of FC. Moreover, from all

Fig. 2 Nature of the q-HATM solution defined in Case 1 for (a) u (x, t) and (b) v (x, t) with distinct α and β at � = −1, n = 1,
and x = 1.

Fig. 3 �-Curves q-HATM solution cited in Case 1 for (a) u (x, t) and (b) v (x, t) with distinct α and β at x = 1, t = 0.01
for n = 1 and 2.
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Fig. 4 Surfaces of (a) u (x, t), (b) v (x, t) and (c) coupled surface of the obtained solution cited in Case 2 at � = −1, n = 1,
and α = β = 1.

Fig. 5 Nature of the q-HATM solution defined in Case 2 for (a) u (x, t) and (b) v (x, t) with distinct α and β at � = −1, n =
1, and x = 1.

Fig. 6 �-curves for achieved solution considered in Case 2 of (a) u (x, t) and (b) v (x, t) with distinct α and β at x =
0.1, t = 0.1 for n = 1and 2.

2040040-13

Fr
ac

ta
ls

 2
02

0.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
U

G
L

A
 S

IT
K

I 
K

O
C

M
A

N
 U

N
IV

E
R

SI
T

E
SI

 o
n 

05
/0

3/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 8, 2020 12:53 0218-348X 2040040

W. Gao et al.

Fig. 7 Surfaces of (a) u (x, t), (b) v (x, t), and (c) coupled surface of the obtained solution cited in Case 3 at � = −1, n = 1,
and α = β = 1.

Fig. 8 Nature of the q-HATM solution defined in Case 3 for (a) u (x, t) and (b) v (x, t) with distinct α and β at � = −1, n = 1,
and x = 0.1.

Fig. 9 �-Curves q-HATM solution cited in Case 3 for (a) u (x, t) and (b) v (x, t) with distinct α and β at x = 0.1, t = 0.1
for n = 1 and 2.
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the plots, we can see that the proposed method is
more accurate and very effective to analyze the con-
sidered complex coupled fractional order equations.

7. CONCLUSION

In this study, the q-HATM is applied lucratively to
find the solution for fractional coupled systems aris-
ing in thermoelasticity. Since AB derivatives and
integrals having fractional order are defined with
the help of generalized Mittag-Leffler function as
the nonsingular and nonlocal kernel, the present
investigation illuminates the effectiveness of the
considered derivative. The existence and unique-
ness of the obtained solution are demonstrated with
the fixed point hypothesis. The results obtained
by the future scheme are more stimulating when
compared with results available in the literature.
Further, the proposed algorithm finds the solution
of the coupled nonlinear problem without consid-
ering any discretization, perturbation, or transfor-
mations. The present investigation illuminates the
considered nonlinear phenomena, which noticeably
depend on the time history and the time instant
and which can be proficiently analyzed by applying
the concept of calculus with fractional order. The
present investigation helps the researchers to study
the behavior nonlinear problems, which give very
interesting and useful consequences. Lastly, we can
conclude that the projected method is extremely
methodical, more effective, and very accurate, and
which can be applied to analyze the diverse classes
of coupled nonlinear problems.
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