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Abstract

Complementary exponential geometric distribution has many applications in survival
and reliability analysis. Due to its importance, in this study, we are aiming to estimate the
parameters of this model based on progressive type-II censored observations. To do this,
we applied the stochastic expectation maximization method and Newton—Raphson tech-
niques for obtaining the maximum likelihood estimates. We also considered the estimation
based on Bayesian method using several approximate: MCMC samples, Lindely approxi-
mation and Metropolis—Hasting algorithm. In addition, we considered the shrinkage esti-
mators based on Bayesian and maximum likelihood estimators. Then, the HPD intervals
for the parameters are constructed based on the posterior samples from the Metropolis—
Hasting algorithm. In the sequel, we obtained the performance of different estimators in
terms of biases, estimated risks and Pitman closeness via Monte Carlo simulation study.
This paper will be ended up with a real data set example for illustration of our purpose.

Keywords Bayesian analysis - Complementary exponential geometric (CEG)
distribution - Progressive type-II censoring - Maximum likelihood estimators - SEM
algorithm - Shrinkage estimator
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1 Introduction

Complementary risk (CR) problems arise naturally in a number of context, especially
in problem of survival analysis, actuarial science, demography and industrial reliability
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[6]. In the classical complementary risk scenarios, the event of interest is related to
causes which are not completely observed. Therefore, the lifetime of the event of
interest is modeled as function of the available information, which is only the maximum
ordered lifetime value among all causes. In the presence of CR in survival analysis,
the risks are latent in the sense that there is no information about which factor was
responsible for component failure, we observe only the maximum lifetime value among
all risks. For example, when studying death on dialysis, receiving a kidney transplant
is an event that competes with the event of interest such as heart failure, pulmonary
embolism and stroke. In reliability, it observed only the maximum component lifetime
of a parallel system, that is, the observable quantities for each component are the
maximum lifetime value to failure among all risks and the cause of failure. For instance,
in industrial applications, the failure of a device can be caused by several competing
causes such as the failure of a component, contamination from dirt, an assembly error,
harsh working environments, among others. For more literature on complementary risk
problems, we refer the reader to Cox and Oakes [10], Crowder et al. [9], Goetghebeur
and Ryan [14], Reiser et al. [34], Lawless [22] and Lu and Tsiatis [27, 28].

The complementary exponential geometric (CEG) model is derived as follows.
Let M be a random variable denoting the number of failure causes, m = 1,2, ..., and
considering M with geometrical distribution of probability given by

PM=m=01-0"" 0<0<1, M=1,2,....
Let us consider x;, i=1,2,...,realizations of random variable denoting the failure
times, i.e., the time to event due to the ith complementary risk, with X; has an exponen-
tial distribution with probability index A, given by

f(xiA) = Aexp {—Ax;}.
In the latent complementary risk scenario, the number of causes M and the lifetime
x; associated with a particular cause are not observable (latent variables), and only the
maximum lifetime X among all causes is usually observed. So, it is only observed that
the random variable is given by

X =max{X;, 1 <i<M}.

The CEG distribution, proposed recently by Louzada et al. [26] is useful model for
modeling lifetime data. This distribution, with increasing failure rate, is complementary
to the exponential geometric model given by Adamidis and Loukas [1]. Louzada et al.
[26] showed that the probability distribution function of the two-parameter CEG ran-
dom variables X is given by

Afe=H

f(x;4,0) = ;
(1 - 0) + 6]’

(1.1

where x > 0, A > 0and 0 < 8 < 1. Here 4 and @ are the scale and shape parameters,
respectively. It is denoted as X ~ CEG(4, #). The cumulative distribution function
(CDF) and survival function of the CEG(4, €) are given by

e—ﬂx

Fx;A,0)=1— ————
(:4.6) [e=#(1 - 0) + 0]

(1.2)
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e—ﬂx

S(id,0) = ————
(x:4,6) Ty (1.3)

respectively.

Where the lifetime associated with a particular risk is not observable, and it
observed only the maximum lifetime value among all risks, then this distribution is
used in latent complementary risks scenarios. Louzada et al. [26] discussed many
properties of this model. But, they did not study about the estimation of the param-
eters based on censored data and prediction of future-order statistics. So, in this
paper, we are aiming to cover these.

The rest of the paper is as follows: In Sect. 2, we discuss the maximum likelihood
estimators of the parameters based on an expectation maximization (EM) and sto-
chastic EM (SEM) algorithm. Section 3 deals with Bayes and shrinkage Bayes esti-
mations assuming the Gamma and Beta priors. Prediction intervals for the survival
time of future observation are also given in this section. Simulation studies as well
as an illustrative example are the content of Sect. 4, and we gave our conclusion and
the results in Sect. 5.

2 Maximum Likelihood Estimation

In this section, we determined the maximum likelihood estimates (MLEs) of the
parameters of CEG distribution based on progressive type-1I censored samples.
Suppose that n independent units are put on a test and that the lifetime distri-
bution of each unit is given by f (xj;/l, 9). Now consider the problem, the ordered
m failures are observed under the progressively type-II censoring scheme plan
R = (Ry,....R,), where each R; >0, Z',’i R; +m = n. If the ordered m failures are
denoted by X,.,,., < X5.,4:pn < ... <X,,...p» then the likelihood function based on

the observed sample X = (Xlzm:erZ:m:n"'"X -m:n) 18 given by

L(x:1,0) = ch x:32,0) [1 = F(x:4,0)] ", @.1)

wherec =n(n—1-R,)(n—=2-R, —R,) ... (n - Z;:l R, —m+ 1). For simplic-
ity, we denoted x;.,,., by x;, j =1, ..., m. Then, from Egs. (1.1), (1.2) and (2.1), we
can write the log- hkehhood functlon of A and 0 based on progressive type-II cen-

sored observed sample x as:

I(x;4,0) o mIn (A) + mIn () = 4 ) x;

j=1

m m A% (22)
2% eI -0)+6]+ Y R 1 [e—]
jzzln[e ( )+ 6] le In R
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MLEs of the parameters 4 and € can be obtained by solving two nonlinear equations
simultaneously. In most cases, the estimators do not admit explicit. They have to be
obtained by solving a two-dimensional optimization problem. It is observed that
the standard Newton—Raphson (NR) algorithm has some problems such as does not
converge in certain cases, a biased procedure, very sensitive to the initial values and
also if the missing data are large then it is not convergent [31]. Little and Rubin [25]
demonstrated that the estimation and maximization (EM) algorithm though converges
slowly but is reasonably more reliable compared to the Newton—Raphson method,
particularly when the missing data are relatively large. Here, we suggest using the EM
algorithm to compute the desired MLEs.

2.1 EM and SEM Algorithm

The EM algorithm, originally proposed by Dempster et al. [12], is a very power-
ful tool in handling the incomplete data problem. The EM algorithm has two steps,
E-step and M-step. For the E-step, one needs to compute the pseudo-log-likelihood
function. It can be emerged from i(w; 4, §) by substituting any function of z; say g(zjk)
with E[g(zjk) |z > xj]. And in the M-step, E(log 1(w;A, 6)) is maximized by taking
the derivatives with respect to the parameters. McLachlan and Krishnan [30] gave a
detailed discussion on EM algorithm and its applications.

We treat this problem as a missing value problem similarly as in Ng et al. [31]. The
progressive type-II censoring can be viewed as an incomplete data set, and therefore,
an EM algorithm is a good alternative to the NR method for numerically finding the
MLEs. First, let us consider the observed and the censored data by
X=X - ,Xm:m:n) and Z = (Zl, ..., Z,,), respectively, where each Z;is 1 XR;

vector with Zj = Zjl,

’ZJ'Rf for j = 1,...,m, and they are not observable. The cen-
sored data vector Z can be thought of as missing data. The combination of W = (X, Z)
forms the complete data set. The log-likelihood (LL) function based on the complete

data is

LLw:4,0) xnln A+nln® — 4 ) x,—2 ) In [e™i(1 - 0) + 6]
j=1 j=1
(2.3)

J

m R m R
22 Y 52 ) Ynehr(1 - 0)+0).

j=1 k=1 j=1 k=1

The MLEs of the parameters A and 6 for complete sample w can be obtained by
deriving the log-likelihood function in Eq. (2.3) with respect to A and 6 and equating
the normal equations to O as follows:
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m m —Ar m R m R — A
; i(1-6) ] Iz (1 - 0)
=Y et 2 2w Y Triate
94 = med=-0+0 IS e O 9)+9
m m Rj
OLL(w;4,0) n _22 1—e ™ 22 = 2
90 0  HehMd-0+0 HE e —0+6

In the E-step, the pseudo-log-likelihood function becomes,

R.

m m —ﬂx m
aLL(w 4L0) n i(1-0) !
— = 2 Z 2 Elzy |z > x;]
)« ; —1 - 7(1—0)+9 j:1 k= k J
R (] — g) (2.4)
J Zke “ji p—
+2 E|lLt—— " |z, >x| =0,
; kz L-W(l ~0)+0 " ’]

()LL(W;&,Q)ZE_zi [ — e _2i j E[ 1 — e—* - ]20
20 0  Heta-0+0 HE lerx1-0)+0 =%
2.5)

We need the following result in sequel.

Theorem 2.1 Given X, =x,...,X; =x;

¢ s the conditional distribution of Z;
k=1,... ,Rj, has form

(14,6

S (&1Xy =10 X =) = fo(51X = ) = G p “FGIA O

(2.6)

where Z; > X; and 0 otherwise.

Proof The proof is straight forward. For details, see Ng et al. [31]. Using Theo-
rem 2.1, we can write

= E[Z;1Z; > x| = / e [e (1 - 0) + 6] dz;.

2.7

F(x |1,0)

And,

Zjk® Az’k(l —-0)
E,=E _/1—| k> X
e (1 —-0)+0
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E 20 8 /oo ije—ﬂzm(l — 9) e—/lzj d
= —-— Z<,
2T I=Fxl40) "/, [e (1 — 6) + 6] (1 - 0) + 9]2 - (2.8)
And,
1= e—izjk 20 © (1 _ e—izjk)
E3=E+—|ij>xj]=—x/ i,
e 4l —0)+0 1-F5lA4.0)  J, [e*(1-6)+0]
e—/lzj
X dz;. 2.9)

(1 -0)+0]"

Thus, in the M-step of the (k + 1)th nonlinear iteration of the EM algorithm, the
value of A**D is first obtained by solving the following equation:
e A4y (1 _ g(k))

m
J
jzzl e_/l(k+l)xj(1 _ H(k)) + 9(")

= Y RE (x:4%,09) +2 Y RE, (x:49,60) = 0.
= =

OLLW;A,0)  n <
37 = %D —Z;xj+2
=

Once A**D is obtained, then §%*V is obtained by solving the equation

OLL(w:A, 0 — ey, '"
(w;4,0) __n _22 : l1-e —22R-E3(x-;/l(k+l),9(k)) =0,
00 Ok+1) - — A +1)xj(1 _ 0(k+1)) + QU+ P J J

(A%+D, 9%+D) is then used as the new value of (4, 0) in the subsequent iteration. Now
the desired maximum likelihood estimates of A and € can be obtained using an itera-
tive procedure which continues until | A®+D) — 2®| 4 |g**+D — g®| < ¢, for some k,
and a prespecified small value of e.

A typical EM algorithm iteratively applies two steps; it is often having a simple
closed form. However, in particular with high-dimensional data or increasing
complexity for censored and lifetime models, one of the biggest disadvantages of EM
algorithm is that it is only a local optimization procedure and can easily get stuck in
a saddle point [40]. A possible solution to overcome the computational inefficiencies
is to invoke stochastic EM algorithm suggested by Celeux and Diebolt [7], Nielsen
[32] and Arabi Belaghi et al. [4]. It can be seen that the above EM expressions do not
turn out to have closed form and therefore one needs to compute these expressions
numerically. So, we used SEM algorithm to obtain maximum likelihood estimators.

The SEM algorithm is a two-step approach: the stochastic imputation step
(S-step) and the maximization step (M-step). The main idea of the SEM algorithms
is to replace the E-step by a stochastic step where the missing data Z are imputed
with a single draw from the distribution of the missing data conditional on the
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observed X. The Z is then substituted to (2.3) to form the pseudo 1(w;A4, ) function,
which is the optimized in the M-step to obtain (A**1, 0*+1) for the next cycle. These
two steps are repeated iteratively until a stationary distribution is reached for each
parameter. The mean of this stationary distribution is considered as an estimator for
the parameters. More formally, given the parameter estimate (/1" , 9") at the kth SEM
cycle, (k+ 1)st cycle of the SEM algorithm evolves as follows:

S-Step Given the current (4%, 6%), simulate (R;) independent values from the con-
ditional distribution f7x (xj:m:n;/i, 9), respectively, for j =1, ..., m to form a realiza-
tion of Z.

 f(zeA0)
1= F(xj54.0)

F(Z.fk;/l’ 9) B F(xj:m:n;’lv 9)
1- F(x A, 0)

jimin>

fZ|X(xj:m:n;)'79) or fZ|X('xj:m:n;}”0) =

m:n’

M-Step Maximize the pseudo i(w;4,60) function given (X, Z) to obtain
(Ak+l 9k+1)_ 0

2.2 Fisher Information Matrix

In this section, we present the observed Fisher information matrix obtained using the
missing value principle of Louis [29]. The observed Fisher information matrix can be
used to construct the asymptotic confidence intervals. The idea of missing information
principle is as follows:

Observed information = Complete information — Missing information. (2.10)

Let us use the following notation (regardless of denoting by bold notation):
n=(4,0), X: the observed data, W: the complete data, Iy(y): the complete
information, Iy (n): the observed information and Iy, y(n): the missing information.
Then, they can be expressed as follows:

Iy(m) = Iy (n) — Ly x(1). (2.11)
The complete information I, (#) is given by
9*(W3n)
Iy (n) = _E[a—;ﬂ .

The Fisher information matrix of the censored observations can be written as

02 lan](Zjl}(Js ’7)]

O oy
Ly = —Ezx, l o

Ly = Y R ().
j=1
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So we obtain the observed information as

Iy(n) = Ly(n) — Ly x(1).

And naturally, the asymptotic variance covariance matrix of # can be obtained by
inverting 7y (7). The elements of matrices for Iy, () and Iy, (17) are denoted by a;;(4, 6)
and b;(4, 6).They are as follows:

© 2 0—24x
aj =£2+2n,192(1—.9)/ *e —dx.
4 [e=#(1 - 6) + 0]

o) —Ax l _ a—Ax 2
a22=%—2n/10/ ¢ [ ¢ ] 2
0 [eH(1-06)+6]

0 —2Ax
a12 = a21 = 2”&9/ xe 4
0 [e(1-0)+6|

Now we provide Iy y (). Since

o [by(x34,0) byo(x::4,0
Ty(n) = ZRj[ b;(’“f, | by
Jj=1

—
=
>
=)
~
S
)
S
—
]
>
5~
~——
[E—]

In which,

| xFeMe - 0) ek
by (x;4,0) = — — —————— +246°(1 - 0)
! 2 e -0y + 6]

1 —e ]2 o 451 = e=45)2
by (x34.0) = 12 + # 2,19/ Le]z‘dzj.
2 " Jetu(1 - 0) + 0]’ 0 [e#i(1 - 6)+6]

—dz
[e*(1 - 6)+6]"

xje—bc] P Zje—2AzJ
bu(xj;/l,G) =by (3;/-;/1,9) =+ 2/10/ ﬁdzj'
e M(1—9)+9] 0 [e74(1-6)+ 0]

Note that, we use the plug-in method of MLEs of A and 8 in finding the above val-
ues. Consequently the variance—covariance matrix of parameter 7 can be obtained by

I ) = [Iy(n) = Lye(m)] - 2.12)

Observe that we still need to obtain the integrations which may be cumbersome task.
Next, we use the SEM algorithm to compute observed information matrix. We first
generate the censored observations z; using Monte Carlo simulation from the condi-
tional density as discussed in before. Subsequently the asymptotic variance—covariance
matrix of the MLEs of the parameters can be obtained. Therefore, an approximate

VV(4)

(1 — @)100% confidence interval for A and 6 is obtained as iiz(x/z and
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Giza/z V(8), where 20,
distribution.

is the (%,)100th percentile of standard normal

3 Bayes Estimates

In this section, we consider the Bayes estimates of the unknown parameters. For
a Bayesian estimation of the parameters, one needs prior distributions for these
parameters. These prior distributions depend upon the knowledge about the param-
eters and the experience of similar phenomena. When both the parameters of the
model are unknown, a joint conjugate prior for the parameters does not exist. In
view of the above, we propose to use independent gamma and beta priors for A and
0, respectively. So, we assume the following independent priors:

7(A) « A9 le™bid 350, 3.1

(@) x 02711 -0, 0<o<I. (3.2)

Here, all the hyper-parameters a,, b, a,, b, are assumed to be known and non-
negative. It can be observed that the non-informative priors of the parameters are
the special case of the proposed prior distribution. Based on the observed sample
{xltm:n, ,xm:m:n}, from the progressive type-II censoring scheme, the likelihood

function becomes:

- m M
I(X;,0) o A""e™* %62 > n [e*b.z(l—a)Jra]eZ,»:l R;In [—e_uj (l_w] (3.3)
The joint posterior density functions of A and 8 can be written as
(4, 0]x) o /1”*“1‘13"‘(2;11x/+”1)9’”*"2‘1(1 — gyl 2T [ a-0+0]

s R_ln[ M ]
=11 —x;
Xe e

A (1-0)+0
) —ix;
— _le—/u(z/.m:] Jgf+b]+zj’1| ij/'>0m+a2—l(1 _ 9)1,2_1672 Z;’;] In [e "1(1—9)+9]
e~ ZhiRiin [ -0)+0]

m

= gamma<m +a,, b+ Z X + Z ijj> X Beta(m +a,, bz) X h(4,0),

=1 =1
(3.4

where

m _ix; m _ix;
h0) = e 2 Eme !(1—0)+0]e—zi=]Rj]n E /(1—9)+6].

One may use the importance sampling method to obtain the MCMC samples and
then compute the Bayes estimates. The simulation algorithm based on importance
sampling is as follows.
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e Step I Generate A from gamma ~ (m +apb + 2L 5+ X0 ijj>.

e Step 2 Generate 6 from Beta ~ (m + a,, b, ).

m M (1— — 3" RIn|e™Mi(1-
e Step 3 Compute h(4, 6’)=e_zzf=lln [e d 9)+0]e L By [e a 6)+€].

e Step 4 Do Steps 1 and 3 for N times.
The Bayes estimate of any function of A and 0, say g(4, 8), is evaluated as

A,0)h(A,0

Therefore, the Bayes estimate of any function of A and 6, say g(4, 8), under the
squared error loss function is:

2 8(4.0;)h(4;.6;)
2 h(4;.6))

One of the most commonly used asymmetric loss functions is the LINEX loss
(LL) function, which is defined by:

Ly®8,6)=exp(h(6 —=9)—h(6—-9) -1, h#0.

The sign of parameter i represents the direction of asymmetry, and its magni-
tude reflects the degree of asymmetry. For # < 0, the underestimation is more seri-
ous than the overestimation, and for 4 > 0, the overestimation is more serious than
the underestimation. For / close to zero, the LL function is approximately the SEL
function. See Parsian and Kirmani [33].

In this case, the Bayes estimate of 9 is obtained as:

Ly(9,5) = E[g(4,0)|x] =

5= = In [Ey(e™)].

provided the above exception exists.

Another commonly used asymmetric loss function is the general ENTROPY loss
(EL) function given by:

5\? )
L@.9=(5) —an(5) -1, 0.
39,00 =13 qln (3 q7F

For g > 0, a positive error has a more serious effect than a negative error, and for
q < 0, a negative error has a more serious effect than a positive error. Note that for
q = —1, the Bayes estimate coincides with the Bayes estimate under the SEL func-
tion. In this case, the Bayes estimate of 9 is obtained as:

9y = [E,(97|X)] 75

provided the above exception exists.
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3.1 Shrinkage Preliminary Test Estimator

In problems of statistical inference, there may exist some known prior information
on some (all) of the parameters, which are usually incorporated in the model as a
constraint, giving rise to restricted models. The estimators resulting from restricted
(unrestricted) model are known as the restricted (unrestricted) estimators. Mostly
the validity of a restricted estimator is under suspicion, resulting to make a prelimi-
nary test on the restrictions. Bancroft [5] pioneered the use of the preliminary test
estimator (PTE) to eliminate such doubt, and further developments appeared in the
works of Saleh and Sen [37], Saleh and Kibria [36], Kibria [15], Kibria and Saleh
[16-20] and Arabi Belaghi et al. [2, 3].

Here, we suppose there exists some non-sample prior information with form of
A = Ay and we are interested in estimating A using such information. So, we can run
the following simple hypotheses to check the accuracy of this information:

HO:A‘=AO’
H, i A4 A

It is demonstrated that constructing shrinkage estimators for A based on fixed
alternatives H, : A = A, + 6, for a fixed 6, does not offer substantial performance
change compared to A. In other words, the asymptotic distribution of shrinkage
estimator coincides with that of A (see Saleh [35] for more details). To overcome this
problem, we consider local alternatives with form

1
Ayt gy = Ao+ 7726,

where 6 is a fixed number.
Under Hy, 1/r(A — 1) is asymptotically N(0,02(41)) and the test statistics can be
defined as

where 4 is MLE of A resulted from SEM method and 0'2(2) is the associated vari-
ance of A that is obtained from the missing information principle. Based on the
asymptotic distribution of W,, we reject H, when W, > )(12(;/), where y is the type-
one error that prespecified by the researchers and )(12(;/) is the y the upper quantile of
chi-square distribution with one degree of freedom.

The asymptotic distribution of W, converges to a non-central chi-square distribu-
tion with one degree of freedom and non-centrality parameter A% /2, where

) &

o2(4)

Note that 62(4) is obtained from (2.11). Thus, we define the shrinkage prelimi-
nary test estimator (PTE) of A as
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AMSPT = w3 + (1 = ) Ayl (W, < 27(1)), (3.5)

and

JBSPT _ why+ (1 = w)jBayeS](Wr < ;(12(7/)). 3.6)

In which w € [0, 1] and /{Bayes is the Bayes estimate of A (see Arabi Belaghi
et al. [2, 3], for more details about the construction of PTEs). We call the AB-SPT
as the Bayesian shrinkage preliminary test estimators (BSPTE). The shrinkage PTE
(SPTE) of 0 is also defined in a similar fashion as in (3.5), which is not given here.
Shrinkage and preliminary test estimators are extensively studied by Saleh [35] and
Saleh et al. [38].

3.2 Lindley Approximation Method

In previous section, we obtained various Bayesian estimates of A and 8 based on
progressive type-II censored observations. We notice that these estimates are in
the form of ratio of two integrals. In practice, by applying Lindley method (see
Lindley [24]) one can approximate all these Bayesian estimates. For the sake of
completeness, we briefly discuss the method below and then apply it to evaluate
corresponding approximate Bayesian estimates. Since the Bayesian estimates are in
the form of ratio of two integrals, we consider the function /(X) defined as

Joo Iy u(a, )/ +o10+0i0d 1dg

I(X) = 0 oo
/0 /0 el(A01X)+p(2.0)d 14O

where u(4, 0) is function of A and 6 only and /(4, 8]X) is the log-likelihood (defined
by Eq. 2.2) and p(4, 8) = logzn(4, 0). Indeed, by applying the Lindley method, 7(X)
can be rewritten as

IX) =u(4,0) + %[(ﬁ,u 201,9,)6,5 + (ftgy + 20195, ) 64,
+(ft30 + 20,05) 6,30 + (g9 + 209D ) 64
+ %[ 0,6, + 09630) (112625 + Liga80 + Lo1,60, + lop1600 )
+(a,f‘9/1 + 19699) (1922615 + LiooG 0 + Lo 1060; + loeeBoo ) |-

where 1 and & are the MLEs of A and 0, respectively. Also, u,, is the second
derivative of the function u(4, ) with respect to A and i, , is the second derivative of
the function u(4, 8) with respect to A evaluated at (/1 0) Also, 6;; = (i, j)th elements
0*1(A,01%)
0100
Liis Loos Loas Liggs Lps; and gy, are presented in “Appendix.”

For the squared error loss function Lgg, we get that

of the inverse of the matrix [— ] are evaluated at (/1 0) Also expressions of
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w(A,0)=2Au, =1, and u,, =uy =upy =y, =u ;y =0,

and the corresponding Bayesian estimate of A is
dgp = E(IX)=4+05 [2/3/1&/1/1 + 20659 + 6-2/1[/1/1/1 + 5'/1/1&99199/1 + 25'/196'9/11/199 + 6'/196'991999]~

Next, the Bayesian estimate of 6 under Lgy is obtained as

(Here u(4,0) = 0,uy = l,andu, = u;; = ugg = ttg; = tt9 = 0)

A R . . 2 A A

Osp = EO1X) = 0 +0.5[2py699 + 25,80, + 655la00 + 36108001300 + 8,,60:1314] -
For the loss function L, 5, noticing that in this case we have

A, 0)=eM,  u,=—he™, wu,, =he™ and u,=uy =uy, =u,y =0,
and with

E(e™|x) = e ™+ 0.5[i1,6,, + t;(20,6,, + 209630 + 67,114 + 611600190,

+26,9602l500 + ‘7130091099)]’

the Bayesian estimate of A is obtained as
A 1 -
Ap = —7 In{E(e™x)}.

Similarly, for 8 we have
u(A,0) =", u,=-he™, uy,=ne™, and u, =u,; =uy, =u,y =0,
0| — a—hd PN s (na A P A2 9 Ao PP
E(e |x) =e "+ 0.5[14990'99 + i1 (2p9699 + 20,64, + 6plops + 36,0600l 100 + CTMUMIMA)],

bp = —% In{E(e™|x)}.

Finally, we consider the ENTROPY loss function. Notice that for the parameter A
and loss function Lg,

(A 0) = A", u; =—-wiA Dy = ww + AT,
and uy = upy = uy; = u ;) =0,
_ A A A ~ A A A A2 45 A A 5
EQ7x) = A7 +0.5[01,,6,, + 0,(26,6 1, + 289640 + 65,1305 + 611609109,

+26 969,500 + 6,196991999)]-
Thus, the approximate Bayesian estimate of A in this case is given by
A _ _1
Agg = {E(A7"0)} .

Also, for the parameter 6 we get that

u(A0) = 07", uy=-wo~ "Dy =ww+ DI, and u, = u,; = uy; = uzy =0,

E@™"x)=0"+05 [’299&99 + f‘e(zﬁe&ee +2p,69, + 6397999 +36,0609L100 + 5/1/1594‘2/14/1)]'

@ Springer



422 O. Giirtinlii Alma, R. Arabi Belaghi

Consequently,
N _1
Opg = {E@7"|x)} .

3.3 Metropolis Hasting Algorithm

Metropolis—Hastings (M—H) algorithm is a useful method for generating random sam-
ples from the posterior distribution using a proposal density. Let g(.) be the density
of the proposal distribution. Since the support of the parameters of our distribution is
positive, we consider the chi -square distribution as our proposal density for estimating
the posterior samples from A. We also consider the standard uniform distribution as
candidate distribution for 8. Based on (3.4), the posterior distribution of A and 6 for the
given sample x is as follows:

m 1
w(Al) = k- a1 (B ) o / 0"l x (1 - )"
0

exp {—2 In (€751 — 6) + 6) + ZRj In (e™%(1 — 6) + 0) }de,

j=1 j=1
and

1 m
77-'(6|X) - k—l(x)em+a2—l(1 _ e)hz—l X / Am+a1—le_l<z'j:1xj+bl>
0

X exp {—2 D in(e7¥i(1 = 0)+6) + Y R;In (e7¥5(1 - 0) + 0) }d,l,

J=1 j=1

where

<) 1 -
k(x) = / / /1m+a1—1e_i<z,~:1 Xf+b1)0m+a2—l a- H)bz—l
0 0

X exp {—2 Z In (e™*5(1 - 6) + ) + ZR, In (e*9(1 - 6) +6) }d/lde.
j=! '

J=1

It is clear that both posterior distributions do not have closed form; therefore, we use
the Metropolis—Hasting algorithm to obtain our Bayes estimators based on posterior
samples, suppose the z(A|x) is the posterior distribution of the MH algorithm steps as
follows:

Given A®,

1. Generate Y, ~ g(y)
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4 Y .
2. Take 2%+ = ¥, with probability p = min{ 1, 204 200 b and 46+ = 4 with

probability 1 — p,

where g(.) is the p.d.f of a chi-square distribution with four degrees of freedom. With a
similar approach, the M—H samples can be drawn from the posterior distribution of |x
with the standard uniform as a proposal distribution. Finally, from the random sample
of size M drawn from the posterior density, some of the initial samples (burn-in) can
be discarded, and the remaining samples can be further utilized to compute Bayes esti-
mates. More precisely, the Bayes estimators of any function g(6, A) of parameters can
be given

8vu(4,0) =

l’ l

B i=ly

Here [ represents the number of burn-in samples. Next, we will use the method of
Chen and Shao [8] to obtain HPD interval estimates for the unknown parameters of the
CEQG distribution. This method has been extensively used for constructing HPD inter-
vals for the unknown parameters of the distribution of interest. In the literature, samples
drawn from the posterior density using importance sampling technique are used to con-
struct HPD intervals, see Dey and Dey [13], Kundu and Pradhan [21] and Singh et al.
[39]. In the present work, we will utilize the samples drawn using the proposed MH
algorithm to construct the interval estimates [11]. More precisely, let us suppose that
7(6|x) denotes the posterior distribution function of 6. Let us further assume that %) be
the pth quantile of 8, that is, 8% = inf{# : z(8|x) > p}, where 0 < p < 1. Observe that
for a given 6%, a simulation consistent estimator of z(6*|x) can be obtained as

(0" |x) = _l ZIW
i=lg

Here Iy is the indicator function. Then the corresponding estimate is obtained as

0, if 0* < 9(1 )

#(0%|x) = Z w;, if Oy <0 <Oy
=i
1, if 0* > Q(M)

where w; = M+IB and 6, are the ordered values of §;. Now, fori = Iy, ..., M, 0" can
be approximated by
9(1 ) lf pP= 0
o» — i-1
0, if Za)<p<2a)

J=lg
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Now to obtain a 100(1 —p)% HPD credible interval for 6, let
i) A ra-pM
Rj = <9<'(4), 9</ o >> forj=1I3,..., [pM],here [a] denotes the largest integer less

than or equal to a. Then choose R;. among all the Rj’.s such that it has the smallest
width.

4 Simulation Study and lllustrative Example

In this section, we conduct some simulation study to compare the performance of
the different methods proposed in the previous sections. For hyper-parameters of
prior distributions, we set a; = b; = 0 and a, = b, = 0. Further, it is supposed that
h = g = lin the LINEX and ENTROPY loss functions. In this importance sampling
method, we generate 1000 MCMC samples and calculated the related Bayes estima-
tors while in M—H algorithm we generate 10,000 samples and withdraw the first
5000 and then obtain the related Bayes estimates based on the remaining samples.
The acceptance rate for M—H algorithm 0.513 with DIC=50.81586 which are rea-
sonable values. Note that in generating the M—H sample we use the MLE’s of 1 and
o(A©,00) = (Ayg, Oy ) as the initial values Markov chains.

We considered three different censoring schemes in Table 1. We run the whole
process for 10,000 times, and the results are provided in Tables 1, 2, 3,4, 5, 6, 7, 8,
9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 for different values of the parame-
ters. Note that, for the shrinkage estimators we used the relative efficiencies formula
as follows.

RE(@SPT P ) _ MSE (0, )
Bayes® ~ Bayes ~ ’
MSE(65 )

where we use Y7 <é’
n

j=1 \VSEL —

2 5
1 h G’imx—a Ai
6) - j=l[e ( - ) _h<0£inex - 9) - 1],

1 n éénlr(}py 7 gEnlmpy . :
- Zj=1[<7> —qgln <T> — 1], for the estimated risk values of the Bayes
estimators based on SEL, LINEX and ENTROPY loss functions. We generate the
censored data from CEG distribution with parameters A =2, § =0.5 and
A =15, 0 =0.6. The results for the NR and EM methods are shown in Tables 2 and
3. Further the estimated risk and biases for the Bayes estimators for different loss
functions are provided in Tables 5 and 6, next in Tables 10, 11, 12 and 13 the simu-
lations results are given for the shrinkage estimators. Note, in Table 10, we assume
the prior guesses to A, = 2.2, 6, = 0.6 and in Table 11, we take 4, = 5.2, 6, = 0.7.
Further the simulated Pitman closeness (PC) for comparing the EM and NR meth-
ods is as follows.

1

PC=P{'9EM_8|<|1§NR_8|}=M

#{ [eass = 8] < [Bs — 9| }
We say that dpy; competes with Jy if > 0.5.
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Table 1 Censoring scheme

R = (rl,...

r

>im

n m Scheme Scheme
30 20 1 (10,0719)

2 (1,2,1,3,3,0"1%)

3 (0,1,0%,2,0,2,0°2,3,0%2,1,02,1)
50 35 4 (15,0%34)

5 (0%34,15)

6 (0,1,0°2,2,0",2,02,1,0°2,2,0*, 1,

02,1,0*,1,0*2,2,0,1,0)
100 80 7 (20,077)
(0*79’ 20)
9 (0*19,5’0*19’5’0*19’5,0*19’5)

Table 2 Bias and MSE (in parentheses) of the estimators with A =2 and 8 = 0.5

Scheme NR EM
A 0 A [4

1 0.2585 (0.7809) 0.0756 (0.2235) 0.0808 (0.2586) 0.0240 (0.0485)
2 0.2788 (0.8303) 0.0628 (0.1832) 0.1524 (0.3363) 0.0070 (0.0361)
3 0.3274 (1.0734) 0.0959 (0.3112) 0.2015 (0.4889) 0.0103 (0.0578)
4 0.1525 (0.3890) 0.0440 (0.1116) 0.0346 (0.1085) 0.0070 (0.0113)
5 0.2295 (0.8090) 0.1506 (0.7161) 0.0722 (0.1544) 0.0004 (0.0177)
6 0.5301 (0.8351) —0.0524 (0.0774) 0.2314 (0.2102) 0.0039 (0.0150)
7 0.0719 (0.1433) 0.0145 (0.0383) 0.0079 (0.0412) 0.0097 (0.0034)
8 0.0731 (0.2235) 0.0379 (0.0668) 0.0226 (0.0435) 0.0050 (0.0046)
9 0.0658 (0.1835) 0.0278 (0.0480) 0.0120 (0.0458) 0.0069 (0.0047)

Table 3 Bias and MSE (in parentheses) of the estimators with A = 5Sand 8 = 0.6

Scheme NR EM
A 0 A

1 0.7160 (5.5910) 0.0905 (0.3306) 0.3280 (2.7502) 0.0287 (0.0837)
2 0.7736 (5.9825) 0.0745 (0.2695) 0.5174 (3.5906) 0.0340 (0.1354)
3 0.9205 (7.9352) 0.1216 (0.5041) 0.7759 (5.7106) 0.0128 (0.1421)
4 0.4220 (2.7578) 0.0525 (0.1635) 0.1653 (1.0516) 0.0171 (0.0367)
5 0.6450 (6.0999) 0.2980 (5.1355) 0.1609 (1.8422) 0.0283 (0.0331)
6 1.4657 (6.2038) —0.0686 (0.1129) 0.7299 (2.4367) 0.0128 (0.0491)
7 0.1969 (1.0030) 0.0172 (0.0560) 0.0352 (0.3594) 0.0099 (0.0166)
8 0.2059 (1.6423) 0.0498 (0.1079) 0.1640 (0.5431) —0.0127 (0.0156)
9 0.1860 (1.3184) 0.0343 (0.0730) 0.1150 (0.4875) —0.0031 (0.0146)
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Table 4 PC comparison of MLEs based on EM and NR algorithms

A 0 Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for Ay, versus Ayg

2 0.5 0.7550 0.8050 0.7760 0.8090 0.7340 0.7800

5 0.6 0.7810 0.8180 0.7830 0.8140 0.7820 0.8190
PC for @EM versus éNR

2 0.5 0.9480 0.9640 0.9640 0.9590 0.9530 0.9650

5 0.6 0.8780 0.8570 0.8720 0.8610 0.9510 0.9440

This simulation results reveal that the SEM is always superior to the NR method
in terms of estimated biases, MSE’s. Further it is seen that SEM estimated is Pitman
closer to the parameters than to the Bayes NR estimates. We also observe that the
shrinkage Bayes estimated have smaller estimated risk than the usual Bayes esti-
mated based on MCMC method. It is shown that the relative efficacies of the pro-
posed shrinkage estimated are higher than 1 which is indicated to use of the shrink-
ages estimators in the case of having suspected non-sample prior information. We
also observe that the Bayes estimators based on M—H algorithm, mostly, perform
those based on Lindely approximation and MCMC method.

4.1 Real Data Analysis

For illustrative purposes, here real data are analyzed using the proposed methods.
A data set on the endurance of deep groove ball bearings analyzed by Lieblein and
Zelen [23] consists of the number of million revolutions before failure for each of 23
ball bearings used in a life test. The data set is as follows.

17.88 42.12 51.96 68.64 93.12 127.96
28.92 45.60 54.12 68.64 98.64 128.01
33.00 48.48 55.56 68.88 105.12 173.4
41.52 51.84 67.80 84.12 105.84

Louzada et al. [26] indicated that the CEG can be fitted to this data set quite well.
For our purpose, we generate three different schemes of progressive type-II censored
sample as follows.

Scheme 1: R=(0,0,0,0,0,0,0,0,0,0, 12)
Scheme 2: R=(12,0,0,0,0,0,0,0,0,0, 0)
Scheme 3: R=(0,0,0,0,0,0, 12,0,0, 0, 0)

The estimated values of the parameters are given in the following Tables 22,

23, 24 and 25 while the approximate and Bayesian confidence intervals are pre-
sented in Table 26.
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Table7 PC comparison of MLEs based on EM and Bayes (under SEL function) algorithms
A 0 Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for Ay, versus jBayes(SEL)

2 0.5 0.6970 0.6830 0.7810 0.8470 0.9330 0.9400

5 0.6 0.6800 0.6280 0.7760 0.7850 0.8610 0.8610
PC for éEM versus 9Bayes(SEL)

2 0.5 0.9430 0.9200 0.9920 0.9910 1 0.9980

5 0.6 0.7460 0.6440 0.9040 0.8990 0.9810 0.9720

Table 8 PC comparison of MLEs based on EM and Bayes (under LINEX loss function) algorithms
i 0 Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for Agy; versus Ag,ye i iNgx)

2 0.5 0.7210 0.6990 0.7990 0.8590 0.9370 0.9430

5 0.6 0.7460 0.6770 0.8160 0.8110 0.8830 0.8810
PC for 0, versus 9Baye5(LINEX)

2 0.5 0.9420 0.9160 0.9920 0.9900 1 0.9980

5 0.6 0.7430 0.6350 0.9020 0.8980 0.9810 0.9720

Table 9 PC comparison of MLEs based on EM and Bayes (under ENTROPY loss function) algorithms
A 0 Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for Agy; Versus  Ap,ye eNTROPY)

2 0.5 0.7280 0.7050 0.8010 0.8600 0.9370 0.9460

5 0.6 0.7160 0.6520 0.7980 0.7980 0.8710 0.8690
PC for @EM versus éBayes(ENTROPY)

2 0.5 0.9390 0.9130 0.9910 0.9900 1 0.9980

5 0.6 0.7340 0.6230 0.9000 0.8970 0.9810 0.9720

5 Summary and Conclusion

In this paper, we proposed different estimators for the parameters of the comple-
mentary exponential distribution. We obtained maximum likelihood estimators
based on N-R and stochastic expectation maximization method as well. Further
different sorts of Bayes estimates are obtained under various loss functions. We
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Table 12 Relative efficiencies

Sch B
(RE) of Bayesian shrinkage cheme aves

estimates with respect to the SEL LINEX ENTROPY

Bayes estimates with 4 = 2 and

0=05 A [ A 0 A 6
1 1.6264 13532 1.6347 1.3684  1.6562 1.3077
2 48325 1.7976 45944 1.8365 53868 1.6679
3 7.5362 23604 6.6295 2.4500  9.2535 2.0938
4 1.4088 1.2688 1.4099 12800 1.4113 1.2377
5 8.1011 2.5296 6.9654 2.6583  9.6389 2.2165
6 8.7391 25188 7.6447 2.6444 102391 22121
7 1.3324  1.2104 1.3298 1.2194  1.3352 1.1866
8 8.4610 2.6644 73519 28313 9.9692 2.3003
9 8.6799 2.6626 7.5487 2.8263 10.2241 2.2999

Table 13 Relative efficiencies
(RE) of Bayesian shrinkage
estimates with respect to the SEL LINEX ENTROPY

Bayes estimates with A = 5 and
9=06 A 0 A 0 A 0

Scheme Bayes

1.6051 13135 1.5611 13246 1.6391 1.2785
39190 1.6580 3.2809 1.6796 4.3681 1.5668
5.1491 2.0340 3.8864 2.0789 6.0973 1.8677
1.4445 12586 1.4240 12672 1.4557 1.2333
52818 22326 4.0320 23073 6.1579 2.0438
54492 22231 4.2616 22921 6.2656 2.0374
1.3684 1.2029 1.3468 1.2099 1.3808 1.1859
5.4644 24049 4.2847 25113 6.2432 2.1779
55136 24037 43429 25038 6.2500 2.1764

O 00 N N R W =

also proposed the shrinkage estimators which has higher relative efficiency than the
usual Bayes estimates. The Bayesian credible intervals are also computed by means
of MCMC samples. We found that maximum likelihood estimators of the unknown
parameters of the distribution do not admit closed form, and further the EM algo-
rithm for this purpose still requires optimization technique to solve the involved
expressions. Therefore, we considered the SEM algorithm to obtain the maximum
likelihood estimators. In simulation study, we presented a comparison between the
estimates obtained using SEM algorithm and estimates from Newton—Raphson and
EM algorithm. We observed that the performance of SEM algorithm is quite sat-
isfactory. For illustration purpose, we also considered a real data set. It should be
mentioned here that the prediction of the future-order statistics based on the pro-
gressive type-II censored samples is also in progress by the authors and we hope to
report these results in another communication.
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Table 18 Bayesian confidence
interval for A =2and 0 = 0.5

Table 19 Coverage probability
(CP) of Bayesian confidence
interval for A =2 and 6 = 0.5

Table 20 Bayesian confidence
interval for A = 5and 6 = 0.6

Scheme Bayesian confidence interval

A 0
1 (1.1056, 3.1061) (0.2190, 0.9667)
2 (1.1002, 3.1434) (0.2202, 0.9668)
3 (1.0457, 3.2321) (0.2155, 0.9695)
4 (1.2348, 2.8898) (0.2476, 0.9503)
5 (1.1365, 3.0676) (0.2406, 0.9648)
6 (1.2723, 3.2512) (0.2218, 0.9488)
7 (1.3942, 2.6143) (0.2999, 0.9160)
8 (1.3087, 2.6982) (0.2898, 0.9338)
9 (1.3325,2.6418) (0.3013, 0.9255)
Scheme CP

A 0

1 0.9850 0.9940
2 0.9810 0.9950
3 0.9770 0.9960
4 0.9670 0.9840
5 0.9770 0.9960
6 0.9940 0.9970
7 0.9690 0.9770
8 0.9680 0.9860
9 0.9670 0.9690
Scheme Bayesian confidence interval

A 0
1 (2.5058, 6.6231) (0.3212, 0.9862)
2 (2.4742, 6.5575) (0.3330, 0.9868)
3 (2.4009, 6.5836) (0.3473, 0.9884)
4 (2.9290, 6.4527) (0.3541, 0.9835)
5 (2.7378, 6.4696) (0.3729, 0.9883)
6 (3.0009, 7.0518) (0.3393, 0.9829)
7 (3.4215, 6.1888) (0.3930, 0.9688)
8 (3.2137, 6.2185) (0.3930, 0.9796)
9 (3.2965, 6.2159) (0.3984, 0.9755)
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Table 21 Coverage probability

Sch CP
(CP) of Bayesian confidence cheme
interval for A=5 and 6 = 0.6 A 0
1 0.9630 1
2 0.9480 0.9990
3 0.9460 0.9990
4 0.9450 1
5 0.9470 1
6 0.9910 0.9980
7 0.9527 0.9776
8 0.9232 0.9875
9 0.9530 0.9780
Table 22 Estimated values of Scheme NR method SEM method
Aand @
A 6 Y| 6
1 0.09778 0.03752 0.04435 0.06966
2 0.06578 0.0185 0.04621 0.06537
3 0.07782 0.0105 0.06646 0.0182
Iabl(ei ;3 Estimated values of Scheme Bayes estimates (MCMC method)
an
SEL LINEX ENTROPY
A b i 6 A o
0.0128 0.6612 0.0128 0.64958 0.0121 0.6273
0.0143 0.6244 0.0143 0.6140 0.01375 0.6140
0.0118 0.6560 0.0118 0.6444 0.01125 0.6223
Table 24 Estimated values of 4 and 6
Scheme Bayes estimates (Lindley’s method)
SEL LINEX ENTROPY
A 0 i o A 6
0.05119 0.05325 0.05240 0.050725 0.052409 0.04766
2 0.0455 0.07634 0.04420 0.06401 0.04419 0.048791
3 0.04022 0.06731 0.04368 0.0600 0.04370 0.05058
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Table 25 Estimated values of Scheme  Bayes estimates (M—H method)

Aand 0
SEL LINEX ENTROPY
A 6 bl o i o
0.0700 0.0337 0.0698 0.0329 0.0630 0.0094
0.0293 0.2374 0.0293 0.2241 0.0258 0.1319
3 0.0248 0.2912 0.0247 0.2742 0.0209 0.2742
Table 26 Confidence interval Method Scheme Confidence interval
for A and 6
A [
Bayesian 1 (0.0325,0.1115) (0.0019, 0.1515)
2 (0.0128, 0.0515) (0.0357, 0.6755)
3 (0.0097, 0.04821) (0.0468, 0.7504)
Asymptotic 1 (= 0.0208, 0.0938)  (0.10737, 0.1283)
2 (0.01722, 0.05703) (- 0.07901,
0.17856)
3 (0.00252, 0.1031) (0.03076, 0.06111)

Acknowledgements This study was supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) and registered in 1059B211600192.
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Lindley Method
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