• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Su Ürünleri Fakültesi
  • Su Ürünleri Temel Bilimleri Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Su Ürünleri Fakültesi
  • Su Ürünleri Temel Bilimleri Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using machine learning technique for disease outbreak prediction in rainbow trout (Oncorhynchus mykiss) farms

Thumbnail

Göster/Aç

Tam metin / Article (2.164Mb)

Tarih

2022

Yazar

Yılmaz, Mesut
Çakır, Mustafa
Oral, Okan
Arslan, Tülin

Üst veri

Tüm öğe kaydını göster

Künye

Yilmaz, M., Çakir, M., Oral, O., Oral, M. A., & Arslan, T. (2022). Using machine learning technique for disease outbreak prediction in rainbow trout (Oncorhynchus mykiss) farms. Aquaculture Research, 00, 1– 12. https://doi.org/10.1111/are.16140

Özet

Water quality parameters such as temperature, dissolved oxygen, pH and total dissolved solids are important environmental factors affecting fish welfare. The deterioration of these parameters beyond the tolerance limits causes environmental stress and suppression of the immune system. Moreover, it allows opportunistic pathogens that are always present in the environment to infect immune-suppressed fish and cause serious disease outbreaks. In this study, water quality parameters and pathogenic bacteria profiles were monitored for 1 year in rainbow trout farms operating in the same river basin. Then, a data set was created considering the pathogenic bacteria in the diseased fish and the water quality parameters in the farm environment. Each of the water quality parameters in the data set was first used as an attribute and their order of importance in terms of disease outbreak was determined. Then, using multinomial logistic regression (MLR) analysis, which is one of the machine learning (ML) techniques, the possibility of water quality parameters revealing a disease outbreak was evaluated. Furthermore, very effective models that can be used to predict the probability of disease occurrence in trout farms with an accuracy of 95.65% have been created

Kaynak

Aquaculture Research

Bağlantı

https://doi.org/10.1111/are.16140
https://hdl.handle.net/20.500.12809/10364

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • Su Ürünleri Temel Bilimleri Bölümü Koleksiyonu [168]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.