Basit öğe kaydını göster

dc.contributor.authorKhan, Faheem
dc.contributor.authorTarımer, İlhan
dc.contributor.authorAlwageed, Hathal Salamah
dc.contributor.authorKaradağ, Buse Cennet
dc.contributor.authorFayaz, Muhammad
dc.date.accessioned2022-11-29T13:05:03Z
dc.date.available2022-11-29T13:05:03Z
dc.date.issued2022en_US
dc.identifier.citationKhan, F.; Tarimer, I.; Alwageed, H.S.; Karada ̆g, B.C.; Fayaz, M.; Abdusalomov, A.B.; Cho, Y.-I. Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms. Electronics 2022, 11, 3518. https://doi.org/10.3390/electronics11213518en_US
dc.identifier.urihttps://doi.org/10.3390/electronics11213518
dc.identifier.uri20799292
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10414
dc.description.abstractThis research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlation were removed from the dataset using the filter feature selection method. Machine learning algorithms using all features produced 95.15% accuracy, while machine learning algorithms using features selected by feature selection produced 95.14% accuracy. The features selected by feature selection were sufficient for classification of popularity in established algorithms. In addition, this dataset contains fewer features, so the computation time is shorter. The reason why Big O time complexity is lower than models constructed without feature selection is that the number of features, which is the most important parameter in time complexity, is low. The statistical analysis was performed on the pre-processed data and meaningful information was produced from the data using machine learning algorithms.en_US
dc.item-language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/electronics11213518en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSpotify datasets (API)en_US
dc.subjectPythonen_US
dc.subjectData preprocessingen_US
dc.subjectMachine learningen_US
dc.subjectMusic trenden_US
dc.titleEffect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithmsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Teknoloji Fakültesi, Bilişim Sistemleri Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-7274-5680en_US
dc.contributor.institutionauthorTarımer, İlhan
dc.identifier.volume11en_US
dc.identifier.issue21en_US
dc.relation.journalElectronics (Switzerland)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster