Basit öğe kaydını göster

dc.contributor.authorYamaç, Sevim Seda
dc.contributor.authorNegiş, Hamza
dc.contributor.authorŞeker, Cevdet
dc.contributor.authorMemon, Azhar M.
dc.contributor.authorKurtuluş, Bedri
dc.contributor.authorTodorovic, Mladen
dc.contributor.authorAlomair, Gadir
dc.date.accessioned2022-12-21T10:50:53Z
dc.date.available2022-12-21T10:50:53Z
dc.date.issued2022en_US
dc.identifier.citationYamaç, S.S.; Negi ̧s, H.; Seker, C.; Memon, A.M.; Kurtulu ̧s, B.; Todorovic, M.; Alomair, G. Saturated Hydraulic Conductivity Estimation Using Artificial Intelligence Techniques: A Case Study for Calcareous Alluvial Soils in a Semi-Arid Region. Water 2022, 14, 3875. https://doi.org/10.3390/ w1423387en_US
dc.identifier.issn20734441
dc.identifier.urihttps://doi.org/10.3390/ w1423387
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10446
dc.description.abstractThe direct estimation of soil hydraulic conductivity (Ks) requires expensive laboratory measurement to present adequately soil properties in an area of interest. Moreover, the estimation process is labor and time-intensive due to the difficulties of collecting the soil samples from the field. Hence, innovative methods, such as machine learning techniques, can be an alternative to estimate Ks. This might facilitate agricultural water and nutrient management which has an impact on food and water security. In this spirit, the study presents neural-network-based models (artificial neural network (ANN), deep learning (DL)), tree-based (decision tree (DT), and random forest (RF)) to estimate Ks using eight combinations of soil data under calcareous alluvial soils in a semi-arid region. The combinations consisted of soil data such as clay, silt, sand, porosity, effective porosity, field capacity, permanent wilting point, bulk density, and organic carbon contents. The results compared with the well-established model showed that all the models had satisfactory results for the estimation of Ks, where ANN7 with soil inputs of sand, silt, clay, permanent wilting point, field capacity, and bulk density values showed the best performance with mean absolute error (MAE) of 2.401 mm h−1, root means square error (RMSE) of 3.096 mm h−1, coefficient of determination (R2) of 0.940, and correlation coefficient (CC) of 0.970. Therefore, the ANN could be suggested among the neural-network-based models. Otherwise, RF could also be used for the estimation of Ks among the tree-based models.en_US
dc.item-language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/ w1423387en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural network;en_US
dc.subjectDeep learningen_US
dc.subjectDecision treeen_US
dc.subjectRandom foresten_US
dc.subjectSoil dataen_US
dc.subjectSoil conductivityen_US
dc.titleSaturated Hydraulic Conductivity Estimation Using Artificial Intelligence Techniques: A Case Study for Calcareous Alluvial Soils in a Semi-Arid Regionen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-6646-9280en_US
dc.contributor.institutionauthorKurtuluş, Bedri
dc.identifier.volume14en_US
dc.identifier.issue23en_US
dc.relation.journalWater (Switzerland)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster