• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering of football players based on performance data and aggregated clustering validity indexes

Thumbnail

Göster/Aç

Tam metin / Article (2.590Mb)

Tarih

2023

Yazar

Akhanlı, Serhat Emre
Hennig, Christian

Üst veri

Tüm öğe kaydını göster

Künye

Akhanli, S. E., & Hennig, C. (2023). Clustering of football players based on performance data and aggregated clustering validity indexes. Journal of Quantitative Analysis in Sports, (0).

Özet

We analyse football (soccer) player performance data with mixed type variables from the 2014-15 season of eight European major leagues. We cluster these data based on a tailor-made dissimilarity measure. In order to decide between the many available clustering methods and to choose an appropriate number of clusters, we use the approach by Akhanli and Hennig (2020. "Comparing Clusterings and Numbers of Clusters by Aggregation of Calibrated Clustering Validity Indexes." Statistics and Computing 30 (5): 1523-44). This is based on several validation criteria that refer to different desirable characteristics of a clustering. These characteristics are chosen based on the aim of clustering, and this allows to define a suitable validation index as weighted average of calibrated individual indexes measuring the desirable features. We derive two different clusterings. The first one is a partition of the data set into major groups of essentially different players, which can be used for the analysis of a team's composition. The second one divides the data set into many small clusters (with 10 players on average), which can be used for finding players with a very similar profile to a given player. It is discussed in depth what characteristics are desirable for these clusterings. Weighting the criteria for the second clustering is informed by a survey of football experts.

Kaynak

JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS

Bağlantı

https://doi.org/10.1515/jqas-2022-0037
https://hdl.handle.net/20.500.12809/10755

Koleksiyonlar

  • İstatistik Bölümü Koleksiyonu [95]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]

İlgili Öğeler

Başlık, yazar, küratör ve konuya göre gösterilen ilgili öğeler.

  • Comparing clusterings and numbers of clusters by aggregation of calibrated clustering validity indexes 

    Akhanlı, Serhat Emre; Hennig, Christian (Springer, 2020)
    A key issue in cluster analysis is the choice of an appropriate clustering method and the determination of the best number of clusters. Different clusterings are optimal on the same data set according to different criteria, ...
  • A new fuzzy time series model based on robust clustering for forecasting of air pollution 

    Dinçer, Nevin Güler; Akkuş, Özge (Elsevier Science Bv, 2018)
    In this study, a new Fuzzy Time Series (FTS) model based on the Fuzzy K-Medoid (FKM) clustering algorithm is proposed in order to forecast air pollution. FTS models generally have some advantages when compared with other ...
  • Classification of Cancer Types by Cluster Analysis Methods 

    İncekırık, Aynur; İşçi Güneri, Öznur; Durmuş, Burcu (Bahadır Fatih YILDIRIM, 2021)
    Cluster analysis can be defined as the group of methods that aim to classify multivariate observations by using similarity/dissimilarity measures between observations. The clusters obtained as a result of the analysis are ...



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.