Basit öğe kaydını göster

dc.contributor.authorAhmed, Syed Ejaz
dc.contributor.authorAydın, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2023-09-19T10:04:47Z
dc.date.available2023-09-19T10:04:47Z
dc.date.issued2023en_US
dc.identifier.citationAhmed, S. E., Aydın, D., & Yılmaz, E. (2023). Estimation of Right-censored SETAR-type Nonlinear Time-series Model. In E3S Web of Conferences (Vol. 409, p. 02010). EDP Sciences.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10967
dc.description.abstractThis paper focuses on estimating the Self-Exciting Threshold Autoregressive (SETAR) type time-series model under right-censored data. As is known, the SETAR model is used when the underlying function of the relation-ship between the time-series itself (Yt), and its p delays $$({Y{t - j}}){j = 1}^p$$ violates the lin-earity assumption and this function is formed by multiple behaviors that called regime. This paper addresses the right-censored dependent time-series problem which has a serious negative effect on the estimation performance. Right-censored time series cause biased coefficient estimates and unqualified predictions. The main contribution of this paper is solving the censorship problem for the SETAR by three different techniques that are kNN imputation which represents the imputation techniques, Kaplan-Meier weights that is applied based on the weighted least squares, synthetic data transformation which adds the effect of censorship to the modeling process by manipulating dataset. Then, these solutions are combined by the SETAR-type model estimation process. To observe the behavior of the nonlinear estimators in practice, a simulation study and a real data example are carried out. The Covid-19 dataset collected in China is used as real data. Results prove that although the three estimators show satisfying performance, the quality of the estimate SETAR model based on the kNN imputation technique dominates the other two estimators.en_US
dc.item-language.isoengen_US
dc.publisherEDP Sciencesen_US
dc.relation.isversionof10.1051/e3sconf/202340902010en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCensored time-seriesen_US
dc.subjectRegime-switching modelen_US
dc.subjectRegression analysisen_US
dc.subjectImputationen_US
dc.titleEstimation of Right-censored SETAR-type Nonlinear Time-series Modelen_US
dc.item-typeconferenceObjecten_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.authorID0000-0001-8393-1270en_US
dc.contributor.authorID0000-0002-9871-4700en_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.volume409en_US
dc.relation.journalE3S Web of Conferencesen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster