• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Renin-Angiotensin System, Not the Kinin-Kallikrein System, Affects Post-Exercise Proteinuria

Date

2018

Author

Koçer, Günnür
Basralı, Filiz
Kuru, Oktay
Şentürk, Ümit Kemal

Metadata

Show full item record

Abstract

Background/Aims: Temporary proteinuria post-exercise is common and is caused predominantly by renal haemodynamic alterations. One reason is up-regulation of angiotensin II (Ang II) due to the reducing effect of angiotensin-converting enzyme (ACE) inhibitors. However, another, ignored, reason could be the kininase effect of ACE inhibition. This study investigated how ACE inhibition reduces post-exercise proteinuria: by either Ang II up-regulation inhibition or bradykinin elevation due to kininase activity inhibition. Methods: Our study included 10 volunteers, who completed 3 high-intensity exercise protocols involving cycling at 1-week intervals. The first protocol was a control arm, the second evaluated the effect of ACE inhibition and the third examined the effect of angiotensin type 1 receptor blockade. Upon application, both agents reduced systolic and diastolic blood pressure; however, there were no statistically significant -differences. In addition, total protein, microalbumin and beta(2)-microglobulin excretion levels in urine specimens were analysed before, 30 min after and 120 min after the exercise protocols. Results: Total protein levels in urine samples were elevated in all 3 protocols after 30 min of high-intensity exercise, compared to baseline levels. However, both ACE inhibition and angiotensin type 1 receptor blockade suppressed total protein in the 30th min. In each protocol, total protein levels returned to the baseline after 120 min. Urinary microalbumin and beta(2)-microglobulin levels during the control protocol were significantly higher 30 min post-exercise; however, only angiotensin type 1 receptor blockade suppressed microalbumin levels. Conclusion: The results indicated Ang II up-regulation, not bradykinin elevation, plays a role in postexercise proteinuria. (C) 2018 S. Karger AG, Basel

Source

Nephron

Volume

139

Issue

4

URI

https://doi.org/10.1159/000489506
https://hdl.handle.net/20.500.12809/1615

Collections

  • Fizyoterapi ve Rehabilitasyon Bölümü Koleksiyonu [50]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.