• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biosynthesis of Silver Nanoparticles by Streptomyces griseorubens isolated from Soil and Their Antioxidant Activity

Thumbnail

View/Open

Tam metin / Full text (911.9Kb)

Date

2017

Author

Baygar, Tuba
Uğur, Aysel

Metadata

Show full item record

Abstract

Microbial mediated biological synthesis of metallic nanoparticles was carried out ecofriendly in the present study. Silver nanoparticles (AgNPs) were extracellularly biosynthesised from Streptomyces griseorubens AU2 and extensively characterised by ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis. Elemental analysis of nanoparticles was also carried out using energy dispersive X-ray spectroscopy. The biosynthesised AgNPs showed the characteristic absorption spectra in UV-vis at 422nm which confirmed the presence of metallic AgNPs. According to the further characterisation analysis, the biosynthesised AgNPs were found to be spherical and crystalline particles with 5-20nm average size. Antioxidant properties of the biosynthesised AgNPs were determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and was found to increase in a dose-dependent matter. The identification of the strain was determined by molecular characterisation method using 16s rDNA sequencing. The present study is the first report on the microbial biosynthesis of AgNPs using S. griseorubens isolated from soil and provides that the active biological components found in the cell-free culture supernatant of S. griseorubens AU2 enable the synthesis of AgNPs.

Source

Iet Nanobiotechnology

Volume

11

Issue

3

URI

https://doi.org/10.1049/iet-nbt.2015.0127
https://hdl.handle.net/20.500.12809/1997

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • Su Ürünleri Avlama ve İşleme Teknolojileri Bölümü Koleksiyonu [54]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.