Bandwidth Selection Problem for Nonparametric Regression Model with Right-Censored Data
Özet
In this paper, the proposed estimator for the unknown nonparametric regression function is a Nadarya-Watson (Nadarya, 1964; Watson, 1964) type kernel estimator. In this estimation procedure, the censored observations are replaced by synthetic data points based on Kaplan-Meier estimator. As known performance of the kernel estimator depends on the selection of a bandwidth parameter. To get an optimum parameter we have considered six selection methods such as the improved version of Akaike information criterion (AICc), Bayesian information criterion (BIC), generalized cross validation (GCV), risk estimation with classical pilots (RECP), Mallow's Cp criterion and restricted empirical likelihood (REML), respectively. In addition, we discuss the behavior of the estimators obtained by these selection methods under different confi gurations of the cens oring level and sample sizes. Simulation and real lifetime data results are presented to evaluate and compare the performance of the selection