• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of fuzzy logic based models for the multi-response surface problems with replicated response measures

Thumbnail

Göster/Aç

Tam metin / Full text (448.5Kb)

Tarih

2015

Yazar

Türkşen, Özlem
Güler, Nevin

Üst veri

Tüm öğe kaydını göster

Özet

A replicated multi-response experiment is a process that includes more than one responses with replications. One of the main objectives in these experiments is to estimate the unknown relationship between responses and input variables simultaneously. In general, classical regression analysis is used for modeling of the responses. However, in most practical problems, the assumptions for regression analysis cannot be satisfied. In this case, alternative modeling methods such as fuzzy logic based modeling approaches can be used. In this study, fuzzy least squares regression (FLSR) and fuzzy clustering based modeling methods, which are switching fuzzy C-regression (SFCR) and Takagi–Sugeno (TS) fuzzy model, are preferred. The novelty of the study is presenting the applicability of SFCR to the multi-response experiment data set with replicated response measures. Three real data set examples are given for application purposes. In order to compare the prediction performance of modeling approaches, root mean square error (RMSE) criteria is used. It is seen from the results that the SFCR gives the better prediction performance among the other fuzzy modeling approaches for the replicated multi-response experimental data sets.

Kaynak

Applied Soft Computing

Cilt

37

Bağlantı

https://doi.org/10.1016/j.asoc.2015.09.028
https://hdl.handle.net/20.500.12809/2857

Koleksiyonlar

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.