• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating the Nonparametric Regression Function by Using Pade Approximation Based on Total Least Squares

Thumbnail

Göster/Aç

Tam metin / Full text (3.534Mb)

Tarih

2020

Yazar

Ahmed, Syed Ejaz
Aydın, Dursun
Yılmaz, Ersin

Üst veri

Tüm öğe kaydını göster

Özet

In this paper, we propose a Pade-type approximation based on truncated total least squares (P - TTLS) and compare it with three commonly used smoothing methods: Penalized spline, Kernel smoothing and smoothing spline methods that have become very powerful smoothing techniques in the non-parametric regression setting. We consider the nonparametric regression model, y(i) = g(x(i)) + epsilon(i), and discuss how to estimate smooth regression function g where we are unsure of the underlying functional form of g. The Pade approximation provides a linear model with multi-collinearities and errors in all its variables. The P - TTLS method is primarily designed to address these issues, especially for solving error-contaminated systems and ill-conditioned problems. To demonstrate the ability of the method, we conduct Monte Carlo simulations under different conditions and employ a real data example. The outcomes of the experiments show that the fitted curve solved by P - TTLS is superior to and more stable than the benchmarked penalized spline (B - PS), Kernel smoothing (KS) and smoothing spline (SS) techniques.

Kaynak

Numerical Functional Analysis and Optimization

Bağlantı

https://doi.org/10.1080/01630563.2020.1794891
https://hdl.handle.net/20.500.12809/365

Koleksiyonlar

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.