dc.contributor.author | Atmaca, Sibel Pasali | |
dc.contributor.author | Akguller, Omer | |
dc.date.accessioned | 2020-11-20T16:20:40Z | |
dc.date.available | 2020-11-20T16:20:40Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.uri | https://doi.org/10.1186/1687-1847-2013-170 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/3933 | |
dc.description | WOS: 000322005200001 | en_US |
dc.description.abstract | We present a theoretical framework for surfaces parameterized by the product of two arbitrary time scales. We also study surfaces by delta regular curves lying on them and give their metric tensor known as the first fundamental form with respect to partial delta derivatives. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.item-rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Time Scales | en_US |
dc.subject | Delta Derivatives | en_US |
dc.subject | Vector Fields | en_US |
dc.subject | Delta Covariant | en_US |
dc.subject | First Fundamental Form | en_US |
dc.title | Surfaces on time scales and their metric properties | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ | en_US |
dc.contributor.departmentTemp | [Atmaca, Sibel Pasali; Akguller, Omer] Mugla Univ, Fac Sci, Dept Math, TR-48000 Mugla, Turkey | en_US |
dc.identifier.doi | 10.1186/1687-1847-2013-170 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 10 | en_US |
dc.relation.journal | Advances in Difference Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |