Basit öğe kaydını göster

dc.contributor.authorKoyuncu, Fatih
dc.date.accessioned2020-11-20T16:33:20Z
dc.date.available2020-11-20T16:33:20Z
dc.date.issued2011
dc.identifier.issn0304-9914
dc.identifier.issn2234-3008
dc.identifier.urihttps://doi.org/10.4134/JKMS.2011.48.5.1065
dc.identifier.urihttps://hdl.handle.net/20.500.12809/4336
dc.descriptionWOS: 000294590700013en_US
dc.description.abstractFor any field F, a polynomial f is an element of F[x(1), x(2),., x(k)] can be associated with a polytope, called its Newton polytope. If the polynomial f has integrally indecomposable Newton polytope, in the sense of Minkowski sum, then it is absolutely irreducible over F, i.e., irreducible over every algebraic extension of F. We present some results giving new integrally indecomposable classes of polygons. Consequently, we have some criteria giving many types of absolutely irreducible bivariate polynomials over arbitrary fields.en_US
dc.item-language.isoengen_US
dc.publisherKorean Mathematical Socen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAbsolute Irreducibilityen_US
dc.subjectBivariate Polynomialsen_US
dc.subjectIntegral Polygonsen_US
dc.subjectIntegral Indecomposabilityen_US
dc.subjectPolytope Methoden_US
dc.titleABSOLUTE IRREDUCIBILITY OF BIVARIATE POLYNOMIALS VIA POLYTOPE METHODen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTempMugla Univ, Dept Math, TR-48170 Mugla, Turkeyen_US
dc.identifier.doi10.4134/JKMS.2011.48.5.1065
dc.identifier.volume48en_US
dc.identifier.issue5en_US
dc.identifier.startpage1065en_US
dc.identifier.endpage1081en_US
dc.relation.journalJournal of the Korean Mathematical Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster