• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potential sources of oxidative stress that induce postexercise proteinuria in rats

Date

2008

Author

Kocer, Guennur
Sentuerk, Uemit Kemal
Kuru, Oktay
Guenduez, Filiz

Metadata

Show full item record

Abstract

Exercise-induced proteinuria is a common consequence of physical activity and is caused predominantly by alterations in renal hemodynamics. Although it has been shown that exercise-induced oxidative stress can also contribute to the occurrence of postexercise proteinuria, the sources of reactive oxygen species that promote it are unknown. We investigated the enzymes nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and xanthine oxidase (XO) as possible sources of oxidative stress in postexercise proteinuria. First, we evaluated the effect of blocking the NADPH oxidase enzyme on postexercise proteinuria. We found a significant increase in urinary protein level, kidney thiobarbituric acid-reactive substances (TBARS), and protein carbonyl content after exhaustive exercise, and NADPH oxidase activity was induced by exercise. Rats that were treated with an NADPH oxidase inhibitor for 4 days before exhaustive exercise showed no increase in kidney TBARS or protein carbonyl derivative level and no proteinuria or NADPH oxidase activation. In the next set of experiments, we investigated the effect of XO blockage on postexercise proteinuria. Oxypurinol, an XO inhibitor was administered to rats for 3 days before exercise. Although XO inhibition significantly decreased kidney TBARS levels and protein carbonyl content in exercised rats, the inhibition did not prevent exercise-induced proteinuria. However, plasma and kidney XO activity was not induced by exercise, but rather it was suppressed under oxypurinol treatment. These results suggest that increased NADPH oxidase activity induced by exhaustive exercise is an important source of elevated oxidative, stress during exercise,which contributes to the occurrence of postexercise proteinuria.

Source

Journal of Applied Physiology

Volume

104

Issue

4

URI

https://doi.org/10.1152/japplphysiol.00581.2007
https://hdl.handle.net/20.500.12809/4967

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.