Basit öğe kaydını göster

dc.contributor.authorGülsu, M.
dc.contributor.authorÖztürk, Y.
dc.contributor.authorSezer, M.
dc.date.accessioned2020-11-20T16:46:33Z
dc.date.available2020-11-20T16:46:33Z
dc.date.issued2011
dc.identifier.issn1818-4952
dc.identifier.urihttps://hdl.handle.net/20.500.12809/5714
dc.description.abstractThe main purpose of this article is to present an approximation method of for singular integro-differential equations with Cauchy kernel in the most general form under the mixed conditions in terms of the second kind Chebyshev polynomials. This method transforms mixed singular integro-differential equations with Cauchy kernel and the given conditions into matrix equation and using the zeroes of the second kind Chebyshev polynomials, the matrix equation turns a system of linear algebraic equation. The error analysis and convergence for the proposed method is also introduced. Finally, some numerical examples are presented. © IDOSI Publications, 2011.en_US
dc.item-language.isoengen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApproximation Methoden_US
dc.subjectCollocation Methodsen_US
dc.subjectSingular Equationen_US
dc.subjectThe Second-Kind Chebyshev Polynomialen_US
dc.titleNumerical solution of singular integro-differential equations with Cauchy kernelen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTempGülsu, M., Department of Mathematics, Faculty of Science, Mugla University, Mugla, Turkey -- [Öztürk, Y., Department of Mathematics, Faculty of Science, Mugla University, Mugla, Turkey -- [Sezer, M., Department of Mathematics, Faculty of Science, Mugla University, Mugla, Turkeyen_US
dc.identifier.volume13en_US
dc.identifier.issue12en_US
dc.identifier.startpage2420en_US
dc.identifier.endpage2427en_US
dc.relation.journalWorld Applied Sciences Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster