Basit öğe kaydını göster

dc.contributor.authorYılmaz, Ersin
dc.contributor.authorBal, Çağatay
dc.contributor.authorDoğu, Zeynep Filiz Eren
dc.date.accessioned2020-11-20T17:17:11Z
dc.date.available2020-11-20T17:17:11Z
dc.date.issued2019
dc.identifier.isbn9781728129327
dc.identifier.urihttps://doi.org/10.1109/IDAP.2019.8875908
dc.identifier.urihttps://hdl.handle.net/20.500.12809/6301
dc.description2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019, 21 September 2019 through 22 September 2019, , 153040en_US
dc.description.abstractThis paper focuses on nonparametric regression modelling of time series observations with data irregularities, such as censoring due to a cutoff value. In general, researchers do not prefer to put up with censored cases in time series analyses because their results are generally biased. In this paper, we present two imputation algorithms for handling auto-correlated censored data: Artificial neural network based imputation and Gaussian imputation. These algorithms provide an estimation of the censored data points and replace them with their estimates. After the imputation procedure, the right-censored time series data is modelled and the performance of imputation methods are monitored. Thus, the effect of two imputation methods is evaluated for both modelling and completing censored observations. The purpose of this study is to prepare the censored data set for analysis without manipulating the observed part of the data such as synthetic data transformation or Kaplan-Meier weights. In this paper, algorithms for two methods are given and imputation processes are expressed. © 2019 IEEE.en_US
dc.item-language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networksen_US
dc.subjectimputation methoden_US
dc.subjectright censored dataen_US
dc.subjecttime-seriesen_US
dc.titleCompleting right-censored data in time-series modellingen_US
dc.item-typeconferenceObjecten_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorYılmaz, Ersin
dc.contributor.institutionauthorBal, Çağatay
dc.contributor.institutionauthorDoğu, Zeynep Filiz Eren
dc.identifier.doi10.1109/IDAP.2019.8875908
dc.relation.journal2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster