Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T17:20:41Z
dc.date.available2020-11-20T17:20:41Z
dc.date.issued2019
dc.identifier.issn1302-3160
dc.identifier.issn2667-4211
dc.identifier.urihttps://doi.org/10.18038/estubtda.632694
dc.identifier.urihttps://app.trdizin.gov.tr//makale/TXpVNU16RXdNQT09
dc.identifier.urihttps://hdl.handle.net/20.500.12809/7020
dc.description.abstractIn this paper, we introduce three different data transformation approaches such as synthetic data transformation ([1]; [2]; [3]), Kaplan-Meier weights ([4]; [5]; [6]) and k-nearest neighbor (kNN) imputation method ([7]) which are commonly used in censored data applications. The aforementioned approaches are particularly useful when one deals with censored data. The key idea expressed here is to find the smoothing spline estimates for the parametric and nonparametric components of a semiparametric regression model with right censored data. The estimation is then carried out based on the modified (or transformed) data set obtained via these transformation techniques. In order to compare the outcomes of three approaches in semi-parametric regression setting, we carried out a simulation study. According to the results of the simulation, it can be said that the Kaplan-Meier weights has been very successful in dealing with censored observations.en_US
dc.item-language.isoengen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSemıparametrıc Regressıon Estımates Based on Some Transformatıon Technıques for Rıght-Censored Dataen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTempMuğla Sıtkı Koçman Üniversitesi, Fen Fakültesi, İstatistik Bölümü, Muğla, Türkiye; Muğla Sıtkı Koçman Üniversitesi, Fen Fakültesi, İstatistik Bölümü, Muğla, Türkiyeen_US
dc.identifier.doi10.18038/estubtda.632694
dc.identifier.volume20en_US
dc.identifier.issueÖzel Sayıen_US
dc.identifier.startpage1en_US
dc.identifier.endpage12en_US
dc.relation.journalEskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster