Therapeutic Effects of Liraglutide, Oxytocin and Granulocyte Colony-Stimulating Factor in Doxorubicin-Induced Cardiomyopathy Model: An Experimental Animal Study
Özet
Doxorubicin-induced (DXR) cardiomyopathy is a serious health issue in oncology patients. Effective treatment of this clinical situation still remains to be discovered. In this experimental animal study, we aimed to define therapeutic effects of liraglutide, oxytocin and granulocyte colony-stimulating factor in DXR-induced cardiomyopathy model. 40 male Sprague-Dawley rats were included to study. 32 rats were given doxorubicin (DXR) for cardiomyopathy model. DXR was administered intraperitonally (i.p.) at every other day of 2.5 mg/kg/day at six times. Eight rats were taken as normal group and no treatment was performed. 32 rats given doxorubicin were divided into 4 groups. Group 1 rats were assigned to a placebo group and was given with a 0.9% NaCl saline solution at a dose of 1 ml/kg/day i.p. (DXR + saline), Group 2 rats were given with 1.8 mg/kg/day of Liraglutide i.p. (DXR + LIR), Group 3 rats were given with 160 mu g/kg/day oxytocin i.p. (DXR + OX), Group 4 rats were given with 100 mu g/kg/day filgrastim i.p. (DXR + G-CSF). All medications were given for 15 days. On day 16, under anesthesia, ECG was recorded from derivation I. After that, blood samples were taken by tail vein puncture for biochemical analysis. Finally, the animals were euthanized and the heart removed and prepared for immunohistochemical examination. All three treatments were shown to ameliorate the toxic effect of doxorubicin in cardiac tissue with the best results in DXR + OX group. DXR + OX group had the most preserved tissue integrity examined by light microscopy, least immune expression level of CASPASE-3 (5.3 +/- 0.9) (p < 0.001) the highest ECG QRS wave voltage amplitude (0.21 +/- 0.008 mV) (p < 0.00001) least plasma MDA (115.3 +/- 19.8 nm) (p < 0.001), TNF-alpha (26.6 +/- 3.05 pg/ml) (p < 0.001), pentraxin-3 (2.7 +/- 0.9 ng/ml) (p < 0.001), Troponin T (1.4 +/- 0.08 pg/ml) (p < 0.001), pro-BNP (11.1 +/- 3.6 pg/ml) (p < 0.001) levels among all three treatment groups. Consistent with previous literature, we found that OX treatment decreased oxidative, apoptotic and inflammatory activity in DXR-induced cardiomyopathy rat model as well as provided better tissue integrity and better results in clinically relevant measures of ECG assessment, plasma Troponin T and pro-BNP levels. LIR and G-CSF treatment caused similar results with less powerful effects. Our findings suggest that with the best results in OX treatment group, all three agents including LIR and G-CSF attenuates DXR-induced cardiomyopathy in this rat model.