• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance evaluation of artificial neural networks for identification of failure modes in composite plates

Tarih

2021

Yazar

Ballı, Serkan
Şen, Faruk

Üst veri

Tüm öğe kaydını göster

Künye

Balli, Serkan and F. Sen. “Performance evaluation of artificial neural networks for identification of failure modes in composite plates.” Materials Testing 63 (2021): 565 - 570.

Özet

The aim of this work is to identify failure modes of double pinned sandwich composite plates by using artificial neural networks learning algorithms and then analyze their accuracies for identification. Mechanically pinned specimens with two serial pins/bolts for sandwich composite plates were used for recognition of failure modes which were obtained in previous experimental studies. In addition, the empirical data of the preceding work was determined with various geometric parameters for various applied preload moments. In this study, these geometric parameters and fastened/bolted joint forms were used for training by artificial neural networks. Consequently, ten different backpropagation training algorithms of artificial neural network were applied for classification by using one hundred data values containing three geometrical parameters. According to obtained results, it was seen that the Levenberg-Marquardt backpropagation training algorithm was the most successful algorithm with 93 % accuracy rate and it was appropriate for modeling of this problem. Additionally, performances of all backpropagation training algorithms were discussed taking into account accuracy and error ratios

Kaynak

Materialpruefung/Materials Testing

Cilt

63

Sayı

6

Bağlantı

https://doi.org/10.1515/mt-2020-0094
https://hdl.handle.net/20.500.12809/9419

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.