Basit öğe kaydını göster

dc.contributor.authorTilki, Umut
dc.contributor.authorErüst, Ali Can
dc.date.accessioned2021-09-16T07:38:16Z
dc.date.available2021-09-16T07:38:16Z
dc.date.issued2021en_US
dc.identifier.citationTilki, U. and A. C. Erüst. 2021. "Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller Design for Quadrotors." Journal of Intelligent and Robotic Systems: Theory and Applications 103 (2). doi:10.1007/s10846-021-01475-2.en_US
dc.identifier.issn09210296
dc.identifier.urihttps://doi.org/10.1007/s10846-021-01475-2
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9535
dc.description.abstractNowadays, small structured unmanned aerial vehicles (UAVs) with four-rotor (Quadrotor) appear in every part of human life works. As the usage areas of the air vehicles become widespread, the development of controller structures which allows the quadrotor to track a specified trajectory precisely is a new research area of interest for researchers. In this work, the nonlinear mathematical model of a four-rotor UAV is obtained by using Newton-Euler method. In the trajectory tracking system of this quadrotor, a new controller structure which is called Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller (RABGFDTSMC) is designed. In this controller structure, the control process is divided into two subsystems in order to provide position and attitude control. RABGFDTSMC is applied to the fully actuated and underactuated subsystems individually. Coefficients of the controller is obtained by using pre-defined characteristic equation. Besides, overall system stability is proved with the Lyapunov function. To demonstrate the effectiveness of the proposed controller, simulation experiments are conducted in MATLAB/ Simulink environment. The simulation results of the proposed controller are compared with the global fast dynamic terminal sliding mode controller by means of trajectory tracking performance in steady-state and transient phases. As a result, the proposed controller RABGFDTSMC method proved its robustness according to the smaller steady state error with less oscillations and more precise flight performance in trajectory tracking.en_US
dc.item-language.isoengen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.relation.isversionof10.1007/s10846-021-01475-2.en_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectQuadrotoren_US
dc.subjectMathematical modelingen_US
dc.subjectTerminal sliding mode controlleren_US
dc.subjectTrajectory trackingen_US
dc.titleRobust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller Design for Quadrotorsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorErüst, Ali Can
dc.identifier.volume103en_US
dc.identifier.issue2en_US
dc.relation.journalJournal of Intelligent and Robotic Systems: Theory and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster