Basit öğe kaydını göster

dc.contributor.authorHamidi, Farzaneh
dc.contributor.authorGilani, Neda
dc.contributor.authorBelaghi, Reza Arabi
dc.contributor.authorSarbakhsh, Parvin
dc.contributor.authorEdgünlü, Tuba
dc.contributor.authorSantaguida, Pasqualina
dc.date.accessioned2021-12-21T12:07:11Z
dc.date.available2021-12-21T12:07:11Z
dc.date.issued2021en_US
dc.identifier.citationHamidi F, Gilani N, Belaghi RA, Sarbakhsh P, Edgünlü T and Santaguida P (2021) Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence. Front. Genet. 12:724785.doi: 10.3389/fgene.2021.724785en_US
dc.identifier.otherPMID: 34899827
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9706
dc.description.abstractOvarian cancer is the second most dangerous gynecologic cancer with a high mortality rate. The classification of gene expression data from high-dimensional and small-sample gene expression data is a challenging task. The discovery of miRNAs, a small non-coding RNA with 18-25 nucleotides in length that regulates gene expression, has revealed the existence of a new array for regulation of genes and has been reported as playing a serious role in cancer. By using LASSO and Elastic Net as embedded algorithms of feature selection techniques, the present study identified 10 miRNAs that were regulated in ovarian serum cancer samples compared to non-cancer samples in public available dataset GSE106817: hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-1233-5p, hsa-miR-4532, hsa-miR-4783-3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290, hsa-miR-3184-5p, and hsa-miR-320b. Further, we implemented state-of-the-art machine learning classifiers, such as logistic regression, random forest, artificial neural network, XGBoost, and decision trees to build clinical prediction models. Next, the diagnostic performance of these models with identified miRNAs was evaluated in the internal (GSE106817) and external validation dataset (GSE113486) by ROC analysis. The results showed that first four prediction models consistently yielded an AUC of 100%. Our findings provide significant evidence that the serum miRNA profile represents a promising diagnostic biomarker for ovarian canceren_US
dc.item-language.isoengen_US
dc.publisherMedGenen_US
dc.relation.isversionof10.3389/fgene.2021.724785en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiomarkeren_US
dc.subjectElasticneten_US
dc.subjectFeature Selectionen_US
dc.subjectGene Expression Omnibus (GEO)en_US
dc.subjectLassoen_US
dc.subjectMachine Learningen_US
dc.subjectOvarian Canceren_US
dc.titleExploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligenceen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Tıp Fakültesi, Temel Tıp Bilimleri Bölümüen_US
dc.contributor.authorID0000-0002-9300-9324en_US
dc.contributor.institutionauthorEdgünlü, Tuba
dc.identifier.volume25en_US
dc.identifier.issue12en_US
dc.identifier.startpage24en_US
dc.identifier.endpage785en_US
dc.relation.journalFrontiers in Geneticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster