• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of parametric and semi-parametric models with randomly right-censored data by weighted estimators: Two applications in colon cancer and hepatocellular carcinoma datasets

Thumbnail

View/Open

Tam Metin / Full Text (1.496Mb)

Date

2021

Author

Yenilmez, İsmail
Yılmaz, Ersin
Mert Kantar, Yeliz
Aydın, Dursun

Metadata

Show full item record

Citation

Yenilmez, İ., Yılmaz, E., Kantar, Y. M., & Aydın, D. (2021). Comparison of parametric and semi-parametric models with randomly right-censored data by weighted estimators: Two applications in colon cancer and hepatocellular carcinoma datasets. Statistical methods in medical research, 9622802211061635. Advance online publication. https://doi.org/10.1177/09622802211061635

Abstract

In this study, parametric and semi-parametric regression models are examined for random right censorship. The components of the aforementioned regression models are estimated with weights based on Cox and Kaplan-Meier estimates, which are semi-parametric and nonparametric methods used in survival analysis, respectively. The Tobit based on weights obtained from a Cox regression is handled as a parametric model instead of other parametric models requiring distribution assumptions such as exponential, Weibull, and gamma distributions. Also, the semi-parametric smoothing spline and the semi-parametric smoothing kernel estimators based on Kaplan-Meier weights are used. Therefore, estimates are obtained from two models with flexible approaches. To show the flexible shape of the models depending on the weights, Monte Carlo simulations are conducted, and all results are presented and discussed. Two empirical datasets are used to show the performance of the aforementioned estimators. Although three approaches gave similar results to each other, the semi-parametric approach was slightly superior to the parametric approach. The parametric approach method, on the other hand, yields good results in medium and large sample sizes and at a high censorship level. All other findings have been shared and interpreted.

Source

Statistical Methods in Medical Research

URI

https://doi.org/10.1177/09622802211061635
https://hdl.handle.net/20.500.12809/9729

Collections

  • İstatistik Bölümü Koleksiyonu [95]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.