• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Tıp Fakültesi
  • Temel Tıp Bilimleri Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Tıp Fakültesi
  • Temel Tıp Bilimleri Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

miR-181a-5p is a potential candidate epigenetic biomarker in sclerosis

Date

2022

Author

Edgünlü, Tuba
Görücü Yılmaz, Şenay
Emre, Ufuk
Taşdelen, Bahar
Kuru, Oktay
Kutlu, Gülnihal
Erdal, Mehmet Emin

Metadata

Show full item record

Citation

Edgünlü, Tuba Gökdoğan, et al. "miR-181a-5p is a potential candidate epigenetic biomarker in multiple sclerosis." Genome 65.11 (2022): 547-561.

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal degeneration. Abnormal expression of microRNAs (miRNAs) plays an important role in MS pathology. In this cohort study, differential expression of the four miRNAs (hsa-miR-155-5p, hsa-miR-9-5p, hsa-miR-181a-5p, and hsa-miR-125b-5p) was inves-tigated in 69 individuals, including 39 MS patients (relapsing-remitting MS (RRMS), n = 27; secondary progressive MS (SPMS), n = 12) and 30 healthy controls. In silico analyses revealed possible genes and pathways specific to miRNAs. Peripheral blood miRNA expressions were detected by quantitative real-time PCR (qPCR). hsa-miR-181a-5p was downregulated and associated with increased MS risk (P = 0.012). The other three miRNAs were upregulated and not associated with MS (P < 0.05). The area under the curve (AUC) is 0.779. In silico analyses showed that hsa-miR-181a-5p may participate in MS pathology by targeting MAP2K1, CREB1, ATXN1, and ATXN3 genes in inflammation and neurodegeneration pathways. The circulatory hsa-miR-181a-5p can regulate target genes, reversing the mechanisms involved in MS pathologies such as protein uptake and processing, cell proliferation and survival, inflammation, and neurodegeneration. Thus, this miRNA could be used as an epigenomic-guided diagnostic tool and for therapeutic purpose.

Source

GENOME

Volume

65

Issue

11

URI

https://hdl.handle.net/20.500.12809/10525

Collections

  • Temel Tıp Bilimleri Bölümü Koleksiyonu [193]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.