• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Maden Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Maden Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phase variation and mechanical properties of waste calcium carbonate to substitute quartz in composite slab production

Thumbnail

View/Open

Tam metin / Article (3.135Mb)

Date

2023

Author

Baş, Sedanur
Güler, Taki
Özer, Ali
Aktürk, Selçuk

Metadata

Show full item record

Citation

Baş, S, Güler, T, Özer, A, Aktürk, S, Kriven, WM. Phase variation and mechanical properties of waste calcium carbonate to substitute quartz in composite slab production. Int J Appl Ceram Technol. 2023; 1–14. https://doi.org/10.1111/ijac.14470

Abstract

Owing to the fast-emerging nature and rapid advancements in the construction industry, huge volumes of marble dust (MD) are generated as reject during slab cutting in marble processing, causing significant environmental hazards. Nowadays, quartz composite slabs have increasingly been preferred in building works due to their excellent hygienic property and mechanical strength. Composite slab is produced using micronized quartz as filler, the grinding of which is an energy-intensive process. Substitution of micronized quartz with MD at different percentages was investigated in natural form and after roasting. Natural MD offered appreciable physical properties closer to those of a quartz composite slab. Physical properties slightly retrograded by quartz supplementation in the raw form. Roasting the filler led to the formation of rounded Ca–silicate. Wollastonite was the first phase formed after sintering at the lowest MD percentage and shortest roasting times. Larnite became dominating phase first by increasing MD percentage and roasting time, and then calcio-olivine formed. Physical characterization test results demonstrated that hardnesses of new phase and particle shape were the key parameters that improved slabs’ mechanical properties of. Hard rounded larnite particles improved mechanical behavior of slabs having the synergic effect of quartz, whereas wollastonite did not show a significant effect.

Source

International Journal of Applied Ceramic Technology

URI

https://doi.org/10.1111/ijac.14470
https://hdl.handle.net/20.500.12809/10842

Collections

  • Maden Mühendisliği Bölümü Koleksiyonu [60]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [3005]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.