• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Methods for Virus–Host Protein–Protein Interaction Prediction

Date

2023

Author

Karpuzcu, Betül Asiye
Türk, Erdem
İbrahim, Ahmad Hassan
Karabulut, Onur Can
Süzek, Barış Ethem

Metadata

Show full item record

Citation

Karpuzcu BA, Türk E, Ibrahim AH, Karabulut OC, Süzek BE. Machine Learning Methods for Virus-Host Protein-Protein Interaction Prediction. Methods Mol Biol. 2023;2690:401-417. doi: 10.1007/978-1-0716-3327-4_31. PMID: 37450162.

Abstract

The attachment of a virion to a respective cellular receptor on the host organism occurring through the virus–host protein–protein interactions (PPIs) is a decisive step for viral pathogenicity and infectivity. Therefore, a vast number of wet-lab experimental techniques are used to study virus–host PPIs. Taking the great number and enormous variety of virus–host PPIs and the cost as well as labor of laboratory work, however, computational approaches toward analyzing the available interaction data and predicting previously unidentified interactions have been on the rise. Among them, machine-learning-based models are getting increasingly more attention with a great body of resources and tools proposed recently. In this chapter, we first provide the methodology with major steps toward the development of a virus–host PPI prediction tool. Next, we discuss the challenges involved and evaluate several existing machine-learning-based virus–host PPI prediction tools. Finally, we describe our experience with several ensemble techniques as utilized on available prediction results retrieved from individual PPI prediction tools. Overall, based on our experience, we recognize there is still room for the development of new individual and/or ensemble virus–host PPI prediction tools that leverage existing tools.

Source

Methods in Molecular Biology

Volume

2690

URI

https://hdl.handle.net/20.500.12809/10854

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [103]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.