• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The association of fraser photinia and its beneficial bacterium (PGB_invit) provided in vitro storage without subculture

Thumbnail

View/Open

Tam metin / Full text (961.8Kb)

Date

2019

Author

Şah, Irmak
Akdemir, Hülya
Kaya, Ergun
Akkaya, Özlem
Çiftci, Yelda Özden

Metadata

Show full item record

Abstract

Endophytes play crucial roles due to their beneficial influence on plant development, growth, fitness, and diversification. Due to these important capabilities, they have received attention from the scientific community and many papers have been published recently about their beneficial role in in vivo and in vitro plant propagation. However, up to now, there is no research on utilization of these microbial endophytes in prolongation of in vitro storage. Thus, the aim of this study is to assess the influence of fraser photinia associated and putatively endophytic bacterium (Plant Growth Bacteria_ in vitro; PGB_invit) on in vitro storage of its host. When pure strain of the bacterium was inoculated, it enabled the storage of microshoots up to 16 months at 25 degrees C without requiring periodic subculture while control (unincubated with PGB_invit.) microshoots died after 2 months of storage without subculture as in vitro plant cultures definitely need periodic subcultures (once in every 4-6 weeks) in order to renew media and gaseous atmosphere. Moreover, while the presence of virulence (vir D1), auxin (aux1), and cytokinin (ipt) production genes was confirmed in plasmid DNA of the bacterium, nitrogen fixing gene (nifH) was detected by the PCR analysis using bacterial culture. Overall results demonstrated that with these capabilities PGB_invit could be useful for in vitro conservation of fraser photinia. Key messageThe novelty is the supplementation of in vitro plant growth without either periodic renewal of the media or decreasing the culture temperature by means of a beneficial plant-bacterium interaction.

Source

Plant Cell Tissue and Organ Culture

Volume

136

Issue

3

URI

https://doi.org/10.1007/s11240-018-01542-x
https://hdl.handle.net/20.500.12809/1088

Collections

  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu [125]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.