Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines
Özet
In this study, the ac magnetic hyperthermia responses of spinel CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of comparable sizes (similar to 20 nm) were investigated to evaluate their feasibility of use in magnetic hyperthermia. The heating ability of EDT-coated nanoparticles which were dispersed in two different carrier media, deionized water and ethylene glycol, at concentrations of 1 and 2 mg/mL, was evaluated by estimating the specific loss power (SLP) (which is a measure of magnetic energy transformed into heat) under magnetic fields of 15, 25, and 50 kA/m at a constant frequency of 195 kHz. The maximum value of SLP has been found to be similar to 315 W/g for CoFe2O4 and similar to 295 W/g for MnFe2O4 and NiFe2O4 nanoparticles. We report very promising heating temperature rising characteristics of CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles under different applied magnetic fields that indicate the effectiveness of these nanoparticles as hyperthermia agents.