• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy

Thumbnail

View/Open

Tam metin / Review (1.382Mb)

Date

2023

Author

Kaur, Simranjit
Saini, Adesh K.
Tuli, Hardeep Singh
Garg, Nancy
Joshi, Hemant
Varol, Mehmet

Metadata

Show full item record

Citation

Kaur, S., Saini, A.K., Tuli, H.S. et al. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Arch Pharmacol (2023). https://doi.org/10.1007/s00210-023-02699-9

Abstract

Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.

Source

Naunyn-Schmiedeberg's Archives of Pharmacology

URI

https://doi.org/10.1007/s00210-023-02699-9
https://hdl.handle.net/20.500.12809/10969

Collections

  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu [125]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.