• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of Defect Size on Subsurface Defect Detectability and Defect Depth Estimation for Concrete Structures by Infrared Thermography

Thumbnail

View/Open

Tam metin / Full text (1.554Mb)

Date

2017

Author

Hiasa, Shuhei
Birgül, Recep
Catbas, F. Necati

Metadata

Show full item record

Abstract

This study aims to reveal the effect and correlation of delamination size and defect shape for using infrared thermography (IRT) through FE modeling to enhance the reliability and applicability of IRT for effective structural inspections. Regarding the effect of delamination size, it is observed that the temperature difference between sound and delaminated area (Delta T) increases as the size of delamination increases; however, Delta T converges to a certain value when the area is 40x40 cm and the thickness is 1 cm. As for the shape of delamination, it can be assumed that if the aspect ratio which is the ratio of the length of the shorter side to the longer side of the delamination is more than 25%, Delta T of any delaminations converges to Delta T of the same area of a square/circular-shaped delamination. Furthermore, if the aspect ratio is 25% or smaller, Delta T becomes smaller than the Delta T of the same area of a square/circular-shaped delamination, and it is getting smaller as the ratio becomes smaller. Furthermore, this study attempts to estimate depths of delaminations by using IRT data. Based on the correlation between the size of delamination and the depth from the concrete surface in regard to Delta T, it was assumed that it was possible to estimate the depth of delamination by comparing Delta T from IRT data to Delta T at several depths obtained from FE model simulations. Through the investigation using IRT data from real bridge deck scanning, this study concluded that this estimation method worked properly to provide delamination depth information by incorporating IRT with FE modeling.

Source

Journal of Nondestructive Evaluation

Volume

36

Issue

3

URI

https://doi.org/10.1007/s10921-017-0435-3
https://hdl.handle.net/20.500.12809/1862

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [68]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.