• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Utilizing Poppy Husk-based Particleboards as an Alternative Material in Case Furniture Construction

Thumbnail

View/Open

Tam metin / Full text (845.9Kb)

Date

2017

Author

Küçütüvek, Mustafa
Kasal, Ali
Kuşkun, Tolga
Erdil, Yusuf Ziya

Metadata

Show full item record

Abstract

Particleboard can be defined as a wood-based panel produced under pressure and heat with the inclusion of wood particles or other lignocellulosic materials and an adhesive. The need for alternative resources to replace wood raw material has emerged. Poppy husk biomass might have a value-added opportunity, and it is possible to produce particleboards from poppy husk and other softwood species. In this study, moment capacities of L-type corner joints fabricated from poppy husk-based particleboards, which are expected to be an alternative material for case furniture, were investigated. For this purpose, particleboards with five different ratios of poppy husk (P1, P2, P3, P4, P5) were produced, and then L-type corner joints were prepared. Corner joints were connected to each other with two different joint techniques (screwed, minifixed). Specimens were tested under static tension and compression loads, which are the loads commonly experienced by joints during service. According to the results, joints constructed from P5 and connected with screws had the highest moment capacity, whereas joints constructed from P1 and connected with minifix had the lowest moment capacity. In conclusion, from a technical point of view, poppy husk-based particleboards could be utilized in case furniture manufacturing for applications that are not overstressed.

Source

Bioresources

Volume

12

Issue

1

URI

https://doi.org/10.15376/biores.12.1.839-852
https://hdl.handle.net/20.500.12809/2208

Collections

  • Ağaç İşleri Endüstri Mühendisliği Bölümü Koleksiyonu [109]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.