• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A review of intrinsic self-healing capability of engineered cementitious composites: Recovery of transport and mechanical properties

Thumbnail

View/Open

Tam metin / Review (2.791Mb)

Date

2015

Author

Yıldırım, Gürkan
Keskin, Özlem Kasap
Keskin, Süleyman Bahadir
Şahmaran, Mustafa
Lachemi, Mohamed

Metadata

Show full item record

Abstract

The need for viable materials in sustainable infrastructures is driving the creation of multifunctional strain-hardening cementitious composites that combine brittle cementitious matrices with fibers. Unlike conventional concrete, these materials typically show multiple microcracking behavior with strain-hardening response under tensile loading. Even with tight widths, however, crack formation is a critical problem that reduces the mechanical performance of structures and accelerates the ingress of water and aggressive substances. As part of a class of cement-based composites exhibiting strainhardening response, engineered cementitious composites (ECCs) have a high likelihood of preventing water and harmful chemicals from penetrating by sealing existing cracks and regaining original mechanical and durability properties through self-healing. This promises to contribute to the development of a new generation of highly durable, damage-tolerant structures. ECCs are potentially excellent for intrinsic self-healing due to tight crack widths and high amounts of supplementary cementitious materials in their mixture proportions. This paper details the parameters governing self-healing efficiency and the effect of self-healing on the residual mechanical and transport properties of cementitious composites. Test methods measuring the effect of these parameters on healing efficiency are also described. (C) 2015 Elsevier Ltd. All rights reserved.

Source

Construction and Building Materials

Volume

101

URI

https://doi.org/10.1016/j.conbuildmat.2015.10.018
https://hdl.handle.net/20.500.12809/2825

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [68]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.