• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Biyoloji Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Biyoloji Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physiological, biochemical, and molecular responses of wheat seedlings to salinity and plant-derived smoke

Thumbnail

View/Open

Tam Metin / Full Text (2.188Mb)

Date

2021

Author

Çatav, Şükrü Serter
Surgun Acar, Yonca
Zemheri Navruz, Fahriye

Metadata

Show full item record

Citation

Çatav, Şükrü Serter, Yonca Surgun-Acar, ve Fahriye Zemheri-Navruz. “Physiological, biochemical, and molecular responses of wheat seedlings to salinity and plant-derived smoke”. South African Journal of Botany 139 (2021): 148-57. https://doi.org/10.1016/j.sajb.2021.02.011.

Abstract

There is great interest in developing strategies to reduce the detrimental effects of salinity on plant growth and crop yield. Plant-derived smoke containing many promotive and inhibitory compounds is known to influence seed germination and plant growth in a concentration-dependent manner. It has been suggested that smoke can also alleviate abiotic stress-induced growth inhibition in several plants. However, there is still a lack of comprehensive knowledge regarding smoke-mediated biochemical and molecular changes in plants grown under stress conditions. Here we show that smoke regulates the expression of some genes encoding transcription factors and antioxidant enzymes in wheat seedlings subjected to salt stress (150 mM NaCl). We found that smoke-water (0.1%) increased the expression levels of TaDREB1, TaWRKY2, TaWRKY19, CAT, and Cu/Zn-SOD in salt-treated seedlings. Smoke-water also enhanced the transcription of TaWRKY19 and Cu/ZnSOD genes under normal growth conditions. In addition, smoke was found to modulate physiological responses of wheat seedlings to salinity. The results demonstrate that smoke-water increases total phenolic content and free radical scavenging activity under salt stress but it leads to a significant decrease in proline accumulation. In conclusion, the current study reveals that smoke, although not having a remarkable effect on growth at the concentration tested, can affect physiological, biochemical, and molecular processes in wheat seedlings exposed to short-term salt stress. Our data also indicate the need for long-term field experiments for a better understanding of the effect of smoke on plant growth in the presence of salinity

Source

South African Journal of Botany

Volume

139

URI

https://doi.org/10.1016/j.sajb.2021.02.011
https://hdl.handle.net/20.500.12809/9405

Collections

  • Biyoloji Bölümü Koleksiyonu [278]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.